Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(8): 1978-86, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26858425

RESUMO

Geographically isolated wetlands (GIWs), those surrounded by uplands, exchange materials, energy, and organisms with other elements in hydrological and habitat networks, contributing to landscape functions, such as flow generation, nutrient and sediment retention, and biodiversity support. GIWs constitute most of the wetlands in many North American landscapes, provide a disproportionately large fraction of wetland edges where many functions are enhanced, and form complexes with other water bodies to create spatial and temporal heterogeneity in the timing, flow paths, and magnitude of network connectivity. These attributes signal a critical role for GIWs in sustaining a portfolio of landscape functions, but legal protections remain weak despite preferential loss from many landscapes. GIWs lack persistent surface water connections, but this condition does not imply the absence of hydrological, biogeochemical, and biological exchanges with nearby and downstream waters. Although hydrological and biogeochemical connectivity is often episodic or slow (e.g., via groundwater), hydrologic continuity and limited evaporative solute enrichment suggest both flow generation and solute and sediment retention. Similarly, whereas biological connectivity usually requires overland dispersal, numerous organisms, including many rare or threatened species, use both GIWs and downstream waters at different times or life stages, suggesting that GIWs are critical elements of landscape habitat mosaics. Indeed, weaker hydrologic connectivity with downstream waters and constrained biological connectivity with other landscape elements are precisely what enhances some GIW functions and enables others. Based on analysis of wetland geography and synthesis of wetland functions, we argue that sustaining landscape functions requires conserving the entire continuum of wetland connectivity, including GIWs.


Assuntos
Modelos Biológicos , Áreas Alagadas , América do Norte
2.
Glob Chang Biol ; 21(4): 1704-14, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25394332

RESUMO

We investigated whether groundwater abstraction for urban water supply diminishes the storage of carbon (C), nitrogen (N), and organic matter in the soil of rural wetlands. Wetland soil organic matter (SOM) benefits air and water quality by sequestering large masses of C and N. Yet, the accumulation of wetland SOM depends on soil inundation, so we hypothesized that groundwater abstraction would diminish stocks of SOM, C, and N in wetland soils. Predictions of this hypothesis were tested in two types of subtropical, depressional-basin wetland: forested swamps and herbaceous-vegetation marshes. In west-central Florida, >650 ML groundwater day(-1) are abstracted for use primarily in the Tampa Bay metropolis. At higher abstraction volumes, water tables were lower and wetlands had shorter hydroperiods (less time inundated). In turn, wetlands with shorter hydroperiods had 50-60% less SOM, C, and N per kg soil. In swamps, SOM loss caused soil bulk density to double, so areal soil C and N storage per m(2) through 30.5 cm depth was diminished by 25-30% in short-hydroperiod swamps. In herbaceous-vegetation marshes, short hydroperiods caused a sharper decline in N than in C. Soil organic matter, C, and N pools were not correlated with soil texture or with wetland draining-reflooding frequency. Many years of shortened hydroperiod were probably required to diminish soil organic matter, C, and N pools by the magnitudes we observed. This diminution might have occurred decades ago, but could be maintained contemporarily by the failure each year of chronically drained soils to retain new organic matter inputs. In sum, our study attributes the contraction of hydroperiod and loss of soil organic matter, C, and N from rural wetlands to groundwater abstraction performed largely for urban water supply, revealing teleconnections between rural ecosystem change and urban resource demand.


Assuntos
Água Subterrânea/análise , Solo/química , Abastecimento de Água/análise , Áreas Alagadas , Carbono/análise , Cidades , Florida , Hidrologia , Nitrogênio/análise
3.
Sci Total Environ ; 798: 149328, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34375269

RESUMO

In the subtropics, climate change is pushing woody mangrove forests into herbaceous saltmarshes, altering soil carbon (C) and nitrogen (N) pools, with implications for coastal wetland productivity and C and N exports. We quantified total C and N pools, and mobile fractions including extractable mineral N, extractable organic C and N, and active (aerobically mineralizable) C and N, in surface soils (top 7.6 cm) of adjacent mangrove (primarily Avicennia germinans) and saltmarsh (Juncus roemerianus) vegetation zones in tidal wetlands of west-central Florida (USA). We tested whether surface-soil accumulations of C, N, and their potentially mobile fractions are greater in mangrove than in saltmarsh owing to greater accumulations in the mangrove zone of soil organic matter (SOM) and fine mineral particles (C- and N-retaining soil constituents). Extractable organic fractions were 39-45% more concentrated in mangrove than in saltmarsh surface soil, and they scaled steeply and positively with SOM and fine mineral particle (silt + clay) concentrations, which themselves were likewise greater in mangrove soil. Elevation may drive this linkage. Mangrove locations were generally at lower elevations, which tended to have greater fine particle content in the surface soil. Active C and extractable mineral N were marginally (p < 0.1) greater in mangrove soil, while active N, total N, and total C showed no statistical differences between zones. Extractable organic C and N fractions composed greater shares of total C and N pools in mangrove than in saltmarsh surface soils, which is meaningful for ecosystem function, as persistent leaching of this fraction can perpetuate nutrient limitation. The active (mineralizable) C and N fractions we observed constituted a relatively small component of total C and N pools, suggesting that mangrove surface soils may export less C and N than would be expected from their large total C and N pools.


Assuntos
Carbono , Solo , Ecossistema , Nitrogênio/análise , Áreas Alagadas
4.
Ecol Appl ; 17(8): 2347-64, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18213974

RESUMO

In urban catchments of arid central Arizona, we investigate how the export of mineral and organic nitrogen (N) in storm runoff is regulated by interactions between local landscape characteristics and broader scale storm features. First, we test whether N export is more a function of (1) processes that affect N concentration in runoff or (2) the propensity of the catchment to convey rainfall as runoff. With data pooled across catchments, the mass of N in export (load) is determined by processes regulating runoff N concentration. There are exceptions when catchments are examined individually, where N load from some catchments is determined by the hydrologic responsiveness of the catchment. Second, we investigate the relationship between N export and catchment features. Loads per catchment area were greater from more impervious catchments, probably because impervious catchments held more N in a mobilizable phase and conveyed more rainfall as overland flow. Loads per area were lower from larger catchments, possibly owing to more N-retention hot spots in larger catchments. Catchments with the greatest N exports were those with commercial land use, and loads decreased as development became less prevalent or as residential replaced industrial land use. Third, we investigated how catchment features moderated direct responses of N export to storms. Export was less correlated with storm features in catchments that were larger, more pervious, and less industrial. Results support an "N build and flush" hypothesis, which purports that there is little biotic processing of N deposited to arid, urban surfaces with little organic matter. The rate and duration of deposition determine the size of the mobile N pool. Any amount of rainfall capable of generating overland flow would entrain nearly all mobilizable N and export it from the catchment. Nonetheless, these results suggest that, even with daunting seasonal and interannual variability in storm conditions, material export can be reduced by managing intrinsic catchment features.


Assuntos
Ecossistema , Nitrogênio/química , Tempo (Meteorologia) , Arizona , Cidades , Conservação dos Recursos Naturais , Nitratos , Compostos de Amônio Quaternário , População Urbana , Poluentes Químicos da Água/química , Poluição Química da Água/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA