Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 23(46): 10969-10973, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28577324

RESUMO

A class of two-dimensional (2D) covalent organometallic polymers, with nanometer-scale crosslinking, was obtained by arene(ruthenium) sulfur chemistry. Their ambivalent nature, with positively charged crosslinks and lypophylic branches is the key to the often sought-for and usually hard-to-achieve solubility of 2D polymers in various kinds of solvents. Solubility is here controlled by the planarity of the polymer, which in turn controls Coulomb interactions between the polymer layers. High planarity is achieved for high symmetry crosslinks and short, rigid branches. Owing to their solubility, the polymers are easily processable, and can be handled as powder, deposited on surfaces by mere spin-coating, or suspended across membranes by drop-casting. The novel 2D materials are potential candidates as flexible membranes for catalysis, cancer therapy, and electronics.

2.
Inorg Chem ; 55(21): 11264-11272, 2016 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-27759383

RESUMO

The Ln(IO3)3(HIO3)y (y = 1 or 1.33) compounds are isostructural with the La(IO3)3(HIO3)y phases, but thermal studies reveal different behaviors. On the one hand, the partial thermal decompositions of these lanthanide compounds lead to the Ln(IO3)3 formulation, with a room temperature structure different from the ß-La(IO3)3 obtained from La(IO3)3(HIO3)y. On the other hand, the partial thermal decompositions of the La1-xLnx(IO3)3(HIO3)y compounds prepared with lanthanides ions (Ce, Pr, Nd, Sm, Eu, Gd, and Yb) lead to acentric ß-La1-xLnx(IO3)3. As for ß-La(IO3)3, reversible structural transitions from ß-La1-xLnx(IO3)3 to centrosymmetric γ-La1-xLnx(IO3)3 are observed. Differential scanning calorimetry analyses of La1-xLnx(IO3)3 solid solutions show that the transition temperatures vary with the lanthanide concentration in the solid solution. A transition is observed only up to a certain fraction of lanthanide-ion substitution; this substitution limit decreases with the cationic radius of the lanthanide ion. Finally, the ß-La1-xNdx(IO3)3 and ß-La1-xYbx(IO3)3 phases are investigated by luminescence spectroscopy.

3.
Inorg Chem ; 54(7): 3608-18, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25790146

RESUMO

The structural and thermal studies of six anhydrous lanthanum iodate polymorphs are presented. The variation of the [IO3(-)]:[La(3+)] molar ratio in the starting solution and the evaporation rate of the solution leads to either the centric La(IO3)3(HIO3) or the acentric La(IO3)3(HIO3)1.33 phases. The crystal structure of La(IO3)3(HIO3)1.33 was determined. The thermal treatments of these two phases up to 490 °C lead to ß-La(IO3)3, observed at room temperature. To better understand the similar thermal behaviors of La(IO3)3(HIO3)1.33 and La(IO3)3(HIO3) compounds and their structural evolution, thermogravimetry-differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC) analyses and in situ temperature-dependent powder X-ray diffraction (XRD) experiments were carried out. These experiments allowed us to highlight the successive formation of δ-La(IO3)3 and γ-La(IO3)3. δ-La(IO3)3 is observed from the beginning of thermal decomposition of La(IO3)3(HIO3)1.33 (at 340 °C) or La(IO3)3(HIO3) (at 300 °C) up to 440 °C. A phase transition from δ-La(IO3)3 to γ-La(IO3)3 then occurs at 440 °C. Finally, the phase transition from γ-La(IO3)3 to ß-La(IO3)3 occurs at 140 °C. A cycle of heating and cooling shows the reversible phase transition at 185 and 140 °C, respectively. ß-, γ-, and δ-La(IO3)3 are three polymorph phases of the first α-La(IO3)3 already characterized. The structure of ß-La(IO3)3 and γ-La(IO3)3 were determined on powder XRD analyses. The iodate compounds present a very broad domain of transparency from the visible range to the beginning of the far-infrared range. The intensities of SHG light generated by α-La(IO3)3, ß-La(IO3)3, La(IO3)3(HIO3)1.33, and α-LiIO3 compounds with acentric structures were compared: ß-La(IO3)3 < La(IO3)3(HIO3)1.33 < α-La(IO3)3 ≈ α-LiIO3. Finally, the luminescence spectroscopy of La(IO3)3(HIO3)1.33:Nd(3+), α-La(IO3)3:Nd(3+), and α-La(IO3)3:Yb(3+) is studied.

4.
Chem Commun (Camb) ; 47(7): 2143-5, 2011 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21165478

RESUMO

Hydrogen storage properties of Ti-doped nanosized (~20 nm) NaAlH(4) supported on carbon nanofibers were affected by the stage at which Ti was introduced. When Ti was deposited first followed by NaAlH(4), sorption properties were superior to the case where NaAlH(4) was deposited first followed by NaAlH(4). This was the result of both a smaller NaAlH(4) particle size and the more extensive catalytic action of Ti in the former material.

5.
J Synchrotron Radiat ; 15(Pt 6): 632-40, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18955771

RESUMO

It has previously been shown that there are many benefits to be obtained in combining several techniques in one in situ set-up to study chemical processes in action. Many of these combined set-ups make use of two techniques, but in some cases it is possible and useful to combine even more. A set-up has recently been developed that combines three X-ray-based techniques, small- and wide-angle X-ray scattering (SAXS/WAXS) and quick-scanning EXAFS (QEXAFS), for the study of dynamical chemical processes. The set-up is able to probe the same part of the sample during the synthesis process and is thus able to follow changes at the nanometre to micrometre scale during, for example, materials self-assembly, with a time resolution of the order of a few minutes. The practicality of this kind of experiment has been illustrated by studying zeotype crystallization processes and revealed important new insights into the interplay of the various stages of ZnAPO-34 formation. The flexibility of this set-up for studying other processes and for incorporating other additional non-X-ray-based experimental techniques has also been explored and demonstrated for studying the stability/activity of iron molybdate catalysts for the anaerobic decomposition of methanol.


Assuntos
Espalhamento a Baixo Ângulo , Difração de Raios X/instrumentação , Difração de Raios X/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Integração de Sistemas
6.
J Am Chem Soc ; 128(38): 12386-7, 2006 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-16984167

RESUMO

A novel combined SAXS/WAXS/XAFS setup for studying the self-assembly processes occurring during the crystallization of porous materials, such as ZnAlPO-34, is described. In a single experiment, it has been possible to obtain congruent and time-resolved information on aggregation processes in the synthesis gel, the incorporation process of Zn2+ ions in the framework, and the formation of the crystalline material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA