Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 32(23-24): 1499-1513, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30463903

RESUMO

In cells lacking telomerase, telomeres gradually shorten during each cell division to reach a critically short length, permanently activate the DNA damage checkpoint, and trigger replicative senescence. The increase in genome instability that occurs as a consequence may contribute to the early steps of tumorigenesis. However, because of the low frequency of mutations and the heterogeneity of telomere-induced senescence, the timing and mechanisms of genome instability increase remain elusive. Here, to capture early mutation events during replicative senescence, we used a combined microfluidic-based approach and live-cell imaging in yeast. We analyzed DNA damage checkpoint activation in consecutive cell divisions of individual cell lineages in telomerase-negative yeast cells and observed that prolonged checkpoint arrests occurred frequently in telomerase-negative lineages. Cells relied on the adaptation to the DNA damage pathway to bypass the prolonged checkpoint arrests, allowing further cell divisions despite the presence of unrepaired DNA damage. We demonstrate that the adaptation pathway is a major contributor to the genome instability induced during replicative senescence. Therefore, adaptation plays a critical role in shaping the dynamics of genome instability during replicative senescence.


Assuntos
Adaptação Fisiológica/genética , Pontos de Checagem do Ciclo Celular/genética , Dano ao DNA/genética , Instabilidade Genômica/genética , Saccharomyces cerevisiae/genética , Reparo do DNA , Genoma Fúngico/genética , Técnicas Analíticas Microfluídicas , Mutação , Imagem Óptica , Saccharomyces cerevisiae/enzimologia , Telomerase/genética
3.
Nature ; 509(7501): 447-52, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24805235

RESUMO

In the ciliate Paramecium, transposable elements and their single-copy remnants are deleted during the development of somatic macronuclei from germline micronuclei, at each sexual generation. Deletions are targeted by scnRNAs, small RNAs produced from the germ line during meiosis that first scan the maternal macronuclear genome to identify missing sequences, and then allow the zygotic macronucleus to reproduce the same deletions. Here we show that this process accounts for the maternal inheritance of mating types in Paramecium tetraurelia, a long-standing problem in epigenetics. Mating type E depends on expression of the transmembrane protein mtA, and the default type O is determined during development by scnRNA-dependent excision of the mtA promoter. In the sibling species Paramecium septaurelia, mating type O is determined by coding-sequence deletions in a different gene, mtB, which is specifically required for mtA expression. These independently evolved mechanisms suggest frequent exaptation of the scnRNA pathway to regulate cellular genes and mediate transgenerational epigenetic inheritance of essential phenotypic polymorphisms.


Assuntos
Epigênese Genética/genética , Genoma/genética , Padrões de Herança/genética , Paramecium tetraurellia/genética , RNA Interferente Pequeno/genética , Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica , Genes/genética , Dados de Sequência Molecular , Paramecium tetraurellia/fisiologia , Regiões Promotoras Genéticas/genética , Reprodução/genética , Reprodução/fisiologia , Deleção de Sequência/genética
4.
Nucleic Acids Res ; 44(4): 1553-65, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26503246

RESUMO

A hallmark of active centromeres is the presence of the histone H3 variant CenH3 in the centromeric chromatin, which ensures faithful genome distribution at each cell division. A functional centromere can be inactivated, but the molecular mechanisms underlying the process of centromere inactivation remain largely unknown. Here, we describe the loss of CenH3 protein as part of a developmental program leading to the formation of the somatic nucleus in the eukaryote Paramecium. We identify two proteins whose depletion prevents developmental loss of CenH3: the domesticated transposase Pgm involved in the formation of DNA double strand cleavages and the Polycomb-like lysine methyltransferase Ezl1 necessary for trimethylation of histone H3 on lysine 9 and lysine 27. Taken together, our data support a model in which developmentally programmed centromere loss is caused by the elimination of DNA sequences associated with CenH3.


Assuntos
Autoantígenos/genética , Centrômero/genética , Proteínas Cromossômicas não Histona/genética , DNA/genética , Deleção de Sequência/genética , Divisão Celular/genética , Núcleo Celular/genética , Proteína Centromérica A , Cromatina/genética , Quebras de DNA de Cadeia Dupla , Histonas/genética , Paramecium/genética , Transposases/genética
5.
BMC Genomics ; 18(1): 483, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28651633

RESUMO

BACKGROUND: The 15 sibling species of the Paramecium aurelia cryptic species complex emerged after a whole genome duplication that occurred tens of millions of years ago. Given extensive knowledge of the genetics and epigenetics of Paramecium acquired over the last century, this species complex offers a uniquely powerful system to investigate the consequences of whole genome duplication in a unicellular eukaryote as well as the genetic and epigenetic mechanisms that drive speciation. High quality Paramecium gene models are important for research using this system. The major aim of the work reported here was to build an improved gene annotation pipeline for the Paramecium lineage. RESULTS: We generated oriented RNA-Seq transcriptome data across the sexual process of autogamy for the model species Paramecium tetraurelia. We determined, for the first time in a ciliate, candidate P. tetraurelia transcription start sites using an adapted Cap-Seq protocol. We developed TrUC, multi-threaded Perl software that in conjunction with TopHat mapping of RNA-Seq data to a reference genome, predicts transcription units for the annotation pipeline. We used EuGene software to combine annotation evidence. The high quality gene structural annotations obtained for P. tetraurelia were used as evidence to improve published annotations for 3 other Paramecium species. The RNA-Seq data were also used for differential gene expression analysis, providing a gene expression atlas that is more sensitive than the previously established microarray resource. CONCLUSIONS: We have developed a gene annotation pipeline tailored for the compact genomes and tiny introns of Paramecium species. A novel component of this pipeline, TrUC, predicts transcription units using Cap-Seq and oriented RNA-Seq data. TrUC could prove useful beyond Paramecium, especially in the case of high gene density. Accurate predictions of 3' and 5' UTR will be particularly valuable for studies of gene expression (e.g. nucleosome positioning, identification of cis regulatory motifs). The P. tetraurelia improved transcriptome resource, gene annotations for P. tetraurelia, P. biaurelia, P. sexaurelia and P. caudatum, and Paramecium-trained EuGene configuration are available through ParameciumDB ( http://paramecium.i2bc.paris-saclay.fr ). TrUC software is freely distributed under a GNU GPL v3 licence ( https://github.com/oarnaiz/TrUC ).


Assuntos
Perfilação da Expressão Gênica/métodos , Genômica/métodos , Anotação de Sequência Molecular/métodos , Paramecium/genética , Análise de Sequência de RNA
6.
PLoS Genet ; 10(9): e1004665, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25254958

RESUMO

In the ciliate Paramecium tetraurelia, differentiation of the somatic nucleus from the zygotic nucleus is characterized by massive and reproducible deletion of transposable elements and of 45,000 short, dispersed, single-copy sequences. A specific class of small RNAs produced by the germline during meiosis, the scnRNAs, are involved in the epigenetic regulation of DNA deletion but the underlying mechanisms are poorly understood. Here, we show that trimethylation of histone H3 (H3K27me3 and H3K9me3) displays a dynamic nuclear localization that is altered when the endonuclease required for DNA elimination is depleted. We identified the putative histone methyltransferase Ezl1 necessary for H3K27me3 and H3K9me3 establishment and show that it is required for correct genome rearrangements. Genome-wide analyses show that scnRNA-mediated H3 trimethylation is necessary for the elimination of long, repeated germline DNA, while single copy sequences display differential sensitivity to depletion of proteins involved in the scnRNA pathway, Ezl1- a putative histone methyltransferase and Dcl5- a protein required for iesRNA biogenesis. Our study reveals cis-acting determinants, such as DNA length, also contribute to the definition of germline sequences to delete. We further show that precise excision of single copy DNA elements, as short as 26 bp, requires Ezl1, suggesting that development specific H3K27me3 and H3K9me3 ensure specific demarcation of very short germline sequences from the adjacent somatic sequences.


Assuntos
Epigênese Genética , Rearranjo Gênico , Genoma de Protozoário , Paramecium tetraurellia/genética , Zigoto/metabolismo , Elementos de DNA Transponíveis , Histonas/metabolismo , Macronúcleo , Metilação , Paramecium tetraurellia/classificação , Paramecium tetraurellia/metabolismo , Filogenia , Poliploidia , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Deleção de Sequência
7.
Biol Cell ; 104(6): 309-25, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22352444

RESUMO

Genomes, like crazy patchwork quilts, are stitched together over evolutionary time from diverse elements, including some unwelcome invaders. To deal with parasitic mobile elements, most eukaryotes employ a genome self-defensive manoeuvre to recognise and silence such elements by homology-dependent interactions with RNA-protein complexes that alter chromatin. Ciliated protozoa employ more 'offensive' tactics by actually unstitching and reassembling their somatic genomes at every sexual generation to eliminate transposons and their remnants, using as patterns the maternal genomes that were rearranged in the previous cycle. Genetic and genomic studies of the distant relatives Paramecium and Tetrahymena have begun to reveal how such events are carried out with remarkable precision. Whole genome, non-coding transcripts from the maternal genome are compared with transcripts from the zygotic genome that are processed through an RNA interference (RNAi)-related process. Sequences found only in the latter are targeted for elimination by the resulting short 'scanRNAs' in many thousand DNA splicing reactions initiated by a domesticated transposase. The involvement of widely conserved mechanisms and protein factors clearly shows the relatedness of these phenomena to RNAi-mediated heterochromatic gene silencing. Such malleability of the genome on a generational time scale also has profound evolutionary implications, possibly including the epigenetic inheritance of acquired adaptive traits.


Assuntos
Cilióforos/genética , DNA de Protozoário/genética , Rearranjo Gênico , RNA de Protozoário/genética , Evolução Molecular , Genoma de Protozoário , Heterocromatina/genética , Pequeno RNA não Traduzido/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA