Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(7): e1011498, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37498810

RESUMO

Schistosomiasis, a severe parasitic disease, is primarily caused by Schistosoma mansoni, Schistosoma japonicum, or Schistosoma haematobium. Currently, praziquantel is the only recommended drug for human schistosome infection. However, the lack of efficacy of praziquantel against juvenile worms and concerns about the emergence of drug resistance are driving forces behind the research for an alternative medication. Schistosomes are obligatory parasites that survive on nutrients obtained from their host. The ability of nutrient uptake depends on their physiological structure. In short, the formation and maintenance of the structure and nutrient supply are mutually reinforcing and interdependent. In this review, we focus on the structural features of the tegument, esophagus, and intestine of schistosomes and their roles in nutrient acquisition. Moreover, we introduce the significance and modes of glucose, lipids, proteins, and amino acids intake in schistosomes. We linked the schistosome structure and nutrient supply, introduced the currently emerging targets, and analyzed the current bottlenecks in the research and development of drugs and vaccines, in the hope of providing new strategies for the prevention and control of schistosomiasis.


Assuntos
Schistosoma japonicum , Esquistossomose , Animais , Humanos , Praziquantel/uso terapêutico , Esquistossomose/parasitologia , Schistosoma haematobium , Schistosoma mansoni , Ingestão de Alimentos
2.
Transl Oncol ; 35: 101711, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37327583

RESUMO

BACKGROUND: Immediate early response 3 (IER3) plays a vital role in many tumors. This study aims to explore the function and mechanism of IER3 in Acute myeloid leukemia (AML). METHODS: The expression of IER3 in AML was performed by bioinformatics analysis. CCK-8 proliferation assay, flow cytometry cycle assay, clone formation assay, and tumorigenic ability were used to investigate the effect of IER3 on AML cells. Unbiased label-free quantitative proteomics and label-free quantitative phosphoproteomics analysis were performed. The regulatory relationship between SATB1(Special AT-rich sequence binding protein 1) and IER3 was investigated by Real time-PCR, Western blot, Chromatin immunoprecipitation (CHIP), and PCR. RESULTS: The result indicated that the prognosis of the high IER3 expression group was significantly worse than that of the low expression group. CCK-8 assay showed that IER3 enhanced the proliferation ability. Cell cycle analysis showed IER3 could promote HL60 cells to enter the S phase of DNA synthesis from the quiescent phase. IER3 could stimulate HEL cells to enter mitosis. Clone-formation experiments suggested that IER3 enhanced clonogenic ability.IER3 promoted the tumorigenesis of AML. Further experimental investigation revealed that IER3 promoted autophagy and induced the occurrence and development of AML by negatively regulating the phosphorylation activation of AKT/mTOR pathway. SATB1 was found to bind to the promoter region of IER3 gene and negatively regulate its transcription. CONCLUSION: IER3 could promote the development of AML and induce autophagy of AML cells by negatively regulating the phosphorylation and activation of AKT/mTOR. By the way, SATB1 may negatively target regulates IER3 transcription.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA