Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
BMC Infect Dis ; 22(1): 880, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36424534

RESUMO

The Omicron transmission has infected nearly 600,000 people in Shanghai from March 26 to May 31, 2022. Combined with different control measures taken by the government in different periods, a dynamic model was constructed to investigate the impact of medical resources, shelter hospitals and aerosol transmission generated by clustered nucleic acid testing on the spread of Omicron. The parameters of the model were estimated by least square method and MCMC method, and the accuracy of the model was verified by the cumulative number of asymptomatic infected persons and confirmed cases in Shanghai from March 26 to May 31, 2022. The result of numerical simulation demonstrated that the aerosol transmission figured prominently in the transmission of Omicron in Shanghai from March 28 to April 30. Without aerosol transmission, the number of asymptomatic subjects and symptomatic cases would be reduced to 130,000 and 11,730 by May 31, respectively. Without the expansion of shelter hospitals in the second phase, the final size of asymptomatic subjects and symptomatic cases might reach 23.2 million and 4.88 million by May 31, respectively. Our results also revealed that expanded vaccination played a vital role in controlling the spread of Omicron. However, even if the vaccination rate were 100%, the transmission of Omicron should not be completely blocked. Therefore, other control measures should be taken to curb the spread of Omicron, such as widespread antiviral therapies, enhanced testing and strict tracking quarantine measures. This perspective could be utilized as a reference for the transmission and prevention of Omicron in other large cities with a population of 10 million like Shanghai.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , China/epidemiologia , Quarentena , Aerossóis e Gotículas Respiratórios
2.
Biophys J ; 118(4): 898-908, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31699333

RESUMO

Defective nitrate signaling in plants causes disorder in nitrogen metabolism, and it negatively affects nitrate transport systems, which toggle between high- and low-affinity modes in variable soil nitrate conditions. Recent discovery of a plasma membrane nitrate transceptor protein NRT1.1-a transporter cum sensor-provides a clue on this toggling mechanism. However, the general mechanistic description still remains poorly understood. Here, we illustrate adaptive responses and regulation of NRT1.1-mediated nitrate signaling in a wide range of extracellular nitrate concentrations. The results show that the homodimeric structure of NRT1.1 and its dimeric switch play an important role in eliciting specific cytosolic calcium waves sensed by the calcineurin-B-like calcium sensor CBL9, which activates the kinase CIPK23, in low nitrate concentration that is, however, impeded in high nitrate concentration. Nitrate binding at the high-affinity unit initiates NRT1.1 dimer decoupling and priming of the Thr101 site for phosphorylation by CIPK23. This phosphorylation stabilizes the NRT1.1 monomeric state, acting as a high-affinity nitrate transceptor. However, nitrate binding in both monomers, retaining the unmodified NRT1.1 state through dimerization, attenuates CIPK23 activity and thereby maintains the low-affinity mode of nitrate signaling and transport. This phosphorylation-led modulation of NRT1.1 activity shows bistable behavior controlled by an incoherent feedforward loop, which integrates nitrate-induced positive and negative regulatory effects on CIPK23. These results, therefore, advance our molecular understanding of adaptation in fluctuating nutrient availability and are a way forward for improving plant nitrogen use efficiency.


Assuntos
Arabidopsis , Nitratos , Proteínas de Transporte de Ânions , Arabidopsis/metabolismo , Transportadores de Nitrato , Nitratos/metabolismo , Proteínas de Plantas/metabolismo
3.
Entropy (Basel) ; 22(9)2020 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-33286794

RESUMO

As humanity struggles to find a path to resilience amidst global change vagaries, understanding organizing principles of living systems as the pillar for human existence is rapidly growing in importance. However, finding quantitative definitions for order, complexity, information and functionality of living systems remains a challenge. Here, we review and develop insights into this problem from the concept of the biotic regulation of the environment developed by Victor Gorshkov (1935-2019). Life's extraordinary persistence-despite being a strongly non-equilibrium process-requires a quantum-classical duality: the program of life is written in molecules and thus can be copied without information loss, while life's interaction with its non-equilibrium environment is performed by macroscopic classical objects (living individuals) that age. Life's key energetic parameter, the volume-specific rate of energy consumption, is maintained within universal limits by most life forms. Contrary to previous suggestions, it cannot serve as a proxy for "evolutionary progress". In contrast, ecosystem-level surface-specific energy consumption declines with growing animal body size in stable ecosystems. High consumption by big animals is associated with instability. We suggest that the evolutionary increase in body size may represent a spontaneous loss of information about environmental regulation, a manifestation of life's algorithm ageing as a whole.

4.
J Hazard Mater ; 469: 134085, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38522197

RESUMO

Composite pollution by microplastics and heavy metals poses a potential threat to the soilplant system and has received increasing attention. Plant growth-promoting bacteria (PGPB) have good application potential for the remediation of combined microplastic and heavy metal pollution, but few related studies exist. The present study employed a pot experiment to investigate the effects of inoculation with the PGPB Bacillus sp. SL-413 and Enterobacter sp. VY-1 on sorghum growth and Cd accumulation under conditions of combined cadmium (Cd) and polyethylene (PE) pollution. Cd+PE composite contamination led to a significant reduction in sorghum length and biomass due to increased toxicity. Inoculation with Bacillus sp. SL-413 and Enterobacter sp. VY-1 alleviated the stress caused by Cd+PE complex pollution, and the dry weight of sorghum increased by 25.7% to 46.1% aboveground and by 12.3% to 45.3% belowground. Bacillus sp. SL-413 and Enterobacter sp. VY-1 inoculation increased the Cd content and accumulation in sorghum and improved the phytoremediation efficiency of Cd. The inoculation treatment effectively alleviated the nutrient stress caused by the reduction in soil mineral nutrients due to Cd+PE composite pollution. The composition of the soil bacterial communities was also affected by the Cd, Cd+PE and bacterial inoculation treatments, which affected the diversity of the soil bacterial communities. Network analyses indicated that bacterial inoculation regulated the interaction of rhizospheric microorganisms and increased the stability of soil bacterial communities. The Mantel test showed that the changes in the soil bacterial community and function due to inoculation with Bacillus sp. SL-413 and Enterobacter sp. VY-1 were important factors influencing sorghum growth and Cd remediation efficiency. The results of this study will provide new evidence for the research on joint plantmicrobe remediation of heavy metal and microplastic composite pollution.


Assuntos
Bacillus , Metais Pesados , Poluentes do Solo , Sorghum , Cádmio/análise , Biodegradação Ambiental , Plásticos , Polietileno , Solo , Rizosfera , Microplásticos , Metais Pesados/toxicidade , Metais Pesados/análise , Enterobacter , Poluentes do Solo/análise
5.
Microorganisms ; 12(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38792702

RESUMO

The green and efficient remediation of soil cadmium (Cd) is an urgent task, and plant-microbial joint remediation has become a research hotspot due to its advantages. High-throughput sequencing and metabolomics have technical advantages in analyzing the microbiological mechanism of plant growth-promoting bacteria in improving phytoremediation of soil heavy metal pollution. In this experiment, a pot trial was conducted to investigate the effects of inoculating the plant growth-promoting bacterium Enterobacter sp. VY on the growth and Cd remediation efficiency of the energy plant Hybrid pennisetum. The test strain VY-1 was analyzed using high-throughput sequencing and metabolomics to assess its effects on microbial community composition and metabolic function. The results demonstrated that Enterobacter sp. VY-1 effectively mitigated Cd stress on Hybrid pennisetum, resulting in increased plant biomass, Cd accumulation, and translocation factor, thereby enhancing phytoremediation efficiency. Analysis of soil physical-chemical properties revealed that strain VY-1 could increase soil total nitrogen, total phosphorus, available phosphorus, and available potassium content. Principal coordinate analysis (PCoA) indicated that strain VY-1 significantly influenced bacterial community composition, with Proteobacteria, Firmicutes, Chloroflexi, among others, being the main differential taxa. Redundancy analysis (RDA) revealed that available phosphorus, available potassium, and pH were the primary factors affecting bacterial communities. Partial Least Squares Discriminant Analysis (PLS-DA) demonstrated that strain VY-1 modulated the metabolite profile of Hybrid pennisetum rhizosphere soil, with 27 differential metabolites showing significant differences, including 19 up-regulated and eight down-regulated expressions. These differentially expressed metabolites were primarily involved in metabolism and environmental information processing, encompassing pathways such as glutamine and glutamate metabolism, α-linolenic acid metabolism, pyrimidine metabolism, and purine metabolism. This study utilized 16S rRNA high-throughput sequencing and metabolomics technology to investigate the impact of the plant growth-promoting bacterium Enterobacter sp. VY-1 on the growth and Cd enrichment of Hybrid pennisetum, providing insights into the regulatory role of plant growth-promoting bacteria in microbial community structure and metabolic function, thereby improving the microbiological mechanisms of phytoremediation.

6.
J Environ Manage ; 128: 192-203, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23747370

RESUMO

The way in which disturbances from human land use are patterned in space across scales can have important consequences for efforts to govern human/environment with regard to, but not only, invasive spread-dispersal processes. In this context, we explore the potential of disturbance patterns along a continuum of scales as proxies for identifying the geographical regions prone to spread of invasive plant species. To this end, we build on a previous framework of cross-scale disturbance patterns, exercising the approach for the Apulia region (South Italy). We first review procedures and results introducing disturbance maps and sliding windows to measure composition (amount) and configuration (contagion) of disturbance patterns both for real and simulated landscapes from random, multifractal and hierarchical neutral models. We introduce cross-scale disturbance profiles obtained by clustering locations from real and simulated landscapes, which are used as foils for comparison to the real landscapes on the same pattern transition space. Critical percolation thresholds derived from landscape observations and theoretical works are discussed in order to identify critical scale domains. With reference to the actual land use and invasive alien flora correlates of disturbance patterns, a cross-scale "invasibility" map of the Apulia region is derived, which shows sub-regions and scale domains with different potentials for the invasive spread of undesirable species. We discuss the potential effect of contagious and non-contagious disturbances like climate change and why multifractal-like disturbance patterns might be more desirable than others to counter biological invasions in a multi-scale and multi-level context of adaptive planning, design and management of disturbance.


Assuntos
Espécies Introduzidas , Modelos Teóricos , Plantas , Mudança Climática , Análise por Conglomerados , Simulação por Computador , Conservação dos Recursos Naturais , Ecossistema , Humanos , Itália , Técnicas de Planejamento
7.
Sci Total Environ ; 900: 165608, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474064

RESUMO

Small floodgates in the river network area own some characteristics: considerable quantity, wide range and short adjustment time, and intercepts the one-dimensional constant flow of rivers, which induce a great impact on riverine water quality. In this study, a typical urban floodgate-controlled reach was selected, and analyzed through the monthly data of four pollutant indicators TN, TP, CODMn and NH3-N at six sampling sites S1-S6 in 2016-2018. The principal component analysis and correlation analysis showed that TP was a representative indicator and there was a positive correlation between various pollutants. The difference test and linear regression showed that the concentration of pollutants at different sampling points varied greatly, and the pollutant concentrations in the longitudinal direction of the river showed a cubic-linear regression. The cluster system and CCME WQI showed that the water quality in the urban floodgate-controlled reach is "marginal" state, and TN and NH3-N are severely exceeding the standard. The "cumulative changes" of the floodgate on the pollutant input to the environment appeared spatial heterogeneity.

8.
Am J Bot ; 99(2): e46-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22268219

RESUMO

PREMISE OF THE STUDY: Microsatellite markers from cellulose synthase genes were developed for the Chinese white poplar, Populus tomentosa, to investigate the genetic diversity of wild germplasm resources and to further identify favorable alleles significantly associated with wood cellulose content. METHODS AND RESULTS: Fifteen microsatellite markers were developed in P. tomentosa by deep sequencing of cellulose synthase genes. Polymorphisms were evaluated in 460 individuals from three climatic regions of P. tomentosa, and all 15 markers revealed polymorphic variation. The number of alleles per locus ranged from two to nine with an average of 4.3; the observed and expected heterozygosity per locus varied from 0.029 to 0.962 and from 0.051 to 0.713, respectively. CONCLUSIONS: These polymorphic markers will potentially be useful for genetic mapping and in molecular breeding for improvement of wood fiber traits in Populus.


Assuntos
Genes de Plantas , Glucosiltransferases/genética , Repetições de Microssatélites , Populus/genética , Alelos , Clima , DNA de Plantas/genética , Frequência do Gene , Loci Gênicos , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo Genético , Populus/enzimologia , Madeira/enzimologia , Madeira/genética
9.
Am J Bot ; 99(9): e357-61, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22933359

RESUMO

PREMISE OF THE STUDY: Microsatellite markers within regulators of heat stress transcription factors were identified in the Populus trichocarpa genome, and then developed for P. simonii to investigate the genetic diversity of germplasm resources and to further identify favorable alleles significantly associated with stress-resistant traits. METHODS AND RESULTS: Thirty-five novel microsatellite markers were identified from genes controlling heat stress transcription factors in P. simonii using a Sanger sequencing protocol. Polymorphisms in 48 individuals from 16 populations of P. simonii revealed that the number of alleles per locus ranged from two to nine with an average of 4.6; the observed heterozygosity and expected heterozygosity per locus varied from 0.143 to 0.857 and from 0.257 to 0.948, respectively. CONCLUSIONS: The new polymorphic markers developed during this study will facilitate the construction of genetic linkage maps and will aid in marker-assisted breeding of a new germplasm with desirable abiotic stress resistance in Populus species.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Choque Térmico/genética , Repetições de Microssatélites/genética , Proteínas de Plantas/genética , Populus/genética , Fatores de Transcrição/genética , Loci Gênicos/genética , Variação Genética , Fatores de Transcrição de Choque Térmico , Dados de Sequência Molecular
10.
Heliyon ; 8(10): e11173, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36325135

RESUMO

Destabilization of the water cycle threatens human lives and livelihoods. Meanwhile our understanding of whether and how changes in vegetation cover could trigger transitions in moisture availability remains incomplete. This challenge calls for better evidence as well as for the theoretical concepts to describe it. Here we briefly summarize the theoretical questions surrounding the role of vegetation cover in the dynamics of a moist atmosphere. We discuss the previously unrecognized sensitivity of local wind power to condensation rate as revealed by our analysis of the continuity equation for a gas mixture. Using the framework of condensation-induced atmospheric dynamics, we then show that with the temperature contrast between land and ocean increasing up to a critical threshold, ocean-to-land moisture transport reaches a tipping point where it can stop or even reverse. Land-ocean temperature contrasts are affected by both global and regional processes, in particular, by the surface fluxes of sensible and latent heat that are strongly influenced by vegetation. Our results clarify how a disturbance of natural vegetation cover, e.g., by deforestation, can disrupt large-scale atmospheric circulation and moisture transport: an increase of sensible heat flux upon deforestation raises land surface temperature and this can elevate the temperature difference between land and ocean beyond the threshold. In view of the increasing pressure on natural ecosystems, successful strategies of mitigating climate change require taking into account the impact of vegetation on moist atmospheric dynamics. Our analysis provides a theoretical framework to assess this impact. The available data for the Northern Hemisphere indicate that the observed climatological land-ocean temperature contrasts are close to the threshold. This can explain the increasing fluctuations in the continental water cycle including droughts and floods and signifies a yet greater potential importance for large-scale forest conservation.

11.
Proc Natl Acad Sci U S A ; 105(44): 16994-9, 2008 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-18952839

RESUMO

A fundamental but unanswered biological question asks how much energy, on average, Earth's different life forms spend per unit mass per unit time to remain alive. Here, using the largest database to date, for 3,006 species that includes most of the range of biological diversity on the planet-from bacteria to elephants, and algae to sapling trees-we show that metabolism displays a striking degree of homeostasis across all of life. We demonstrate that, despite the enormous biochemical, physiological, and ecological differences between the surveyed species that vary over 10(20)-fold in body mass, mean metabolic rates of major taxonomic groups displayed at physiological rest converge on a narrow range from 0.3 to 9 W kg(-1). This 30-fold variation among life's disparate forms represents a remarkably small range compared with the 4,000- to 65,000-fold difference between the mean metabolic rates of the smallest and largest organisms that would be observed if life as a whole conformed to universal quarter-power or third-power allometric scaling laws. The observed broad convergence on a narrow range of basal metabolic rates suggests that organismal designs that fit in this physiological window have been favored by natural selection across all of life's major kingdoms, and that this range might therefore be considered as optimal for living matter as a whole.


Assuntos
Metabolismo Energético/fisiologia , Animais , Evolução Biológica , Peso Corporal , Bases de Dados Factuais , Humanos , Redes e Vias Metabólicas , Seleção Genética , Biologia de Sistemas
12.
Huan Jing Ke Xue ; 42(1): 234-241, 2021 Jan 08.
Artigo em Zh | MEDLINE | ID: mdl-33372475

RESUMO

Planktonic fungi are important components of aquatic ecosystems, and analyses of their community composition and function have far-reaching significance for the ecological management and maintenance of the Danjiangkou reservoir. The composition and function of the planktonic fungal community in the surface water layer of the Danjiangkou Reservoir in October 2019 was investigated using Illumina MiSeq sequencing combined with FUNGuild analyses. According to the results, the reservoir community is primarily composed of 6 phyla 213 genera, with Ascomycota and Basidiomycota being the dominant phyla. The water quality monitoring results for the Danjiangkou Reservoir met the Grade Ⅰ or Ⅱ water quality standards for the Environmental Quality Standards for Surface Water (GB 38382-2002). A redundancy analysis (RDA) of the planktonic fungal community and environmental factors showed that TN, TP, T, ORP, and TLI are important factors influencing the distribution of planktonic fungi. The Spearman correlation analysis showed that Alternaria, Cladosporium, Penicillium, Lodderomyces, and Acremonium were significantly correlated with physical and chemical water quality parameters. FUNGuild was used to predict the nutritional and functional groups of planktonic fungi, and the results showed that pathotrophs, saprotrophs, and pathotroph-saprotrophs were the major components. The pathotroph composition analysis showed that the proportions of plant pathogens and animal pathogens in the Heijizui samples were significantly higher than those observed in the other monitoring sites. The community composition, function, and influencing factors of the planktonic fungi community in the Danjiangkou Reservoir were investigated and indicated that it is potentially at ecological risk and more attention needs to be paid to planktonic fungi in the biological monitoring of water quality.


Assuntos
Micobioma , Plâncton , Animais , China , Ecossistema , Fungos/genética , Qualidade da Água
14.
J Theor Biol ; 264(1): 95-103, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20085769

RESUMO

Extinction of disease can be explained by the patterns of epidemic spreading, yet the underlying causes of extinction are far from being well understood. To reveal a mechanism of disease extinction, a cellular automata model with both birth, death rate and migration is presented. We find that, in single patch, when the infection rate is small or large enough, the disease will disappear for a long time. When the invasion form is in the coexistence of stable spiral and turbulent wave state, the disease will persist. Also, we find that the migration has dual effects on the epidemic spreading. On one hand, in the extinction region of single patch, if the migration rate is large enough, there is a phase transition from the disease free to endemic state in two patches. On the other hand, migration will induce extinction in the regime, which can ensure the persistence of the disease in single patch, due to emergence of anti-phase synchrony. The results obtained well reveal the effect of infection rate and migration on the extinction of the disease, which enriches the finding in the filed of epidemiology and may provide some new ideas to control the disease in the real world.


Assuntos
Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/transmissão , Emigração e Imigração , Modelos Biológicos , Algoritmos , Animais , Simulação por Computador , Doenças Endêmicas , Humanos , Incidência , Dinâmica Populacional
15.
J Biol Phys ; 36(2): 161-74, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19669415

RESUMO

Spatial patterns are a subfield of spatial ecology, and these patterns modify the temporal dynamics and stability properties of population densities at a range of spatial scales. Localized ecological interactions can generate striking large-scale spatial patterns in ecosystems through spatial self-organization. Possible mechanisms include oscillating consumer-resource interactions, localized disturbance-recovery processes, and scale-dependent feedback. However, in this paper, our main aim is to study the effect of tide on the pattern formation of a spatial plant-wrack model. We discuss the changes of the wavelength, wave speed, and the conditions of the spatial pattern formation, according to the dispersion relation formula. Both the mathematical analysis and numerical simulations reveal that the tide has great influence on the spatial pattern. More specifically, typical traveling spatial patterns can be obtained. Our obtained results are consistent with the previous observation that wracks exhibit traveling patterns, which is useful to help us better understand the dynamics of the real ecosystems.

16.
Artigo em Inglês | MEDLINE | ID: mdl-32079120

RESUMO

The water-level fluctuation zone (WLFZ) is a transitional zone between terrestrial and aquatic ecosystems. Plant communities that are constructed artificially in the WLFZ can absorb and retain nutrients such as nitrogen (N) and phosphorus (P). However, the microbial community composition and function associated with this process have not been elucidated. In this study, four artificially constructed plant communities, including those of herbs (Cynodon dactylon and Chrysopogon zizanioides), trees (Metasequoia glyptostroboides), and shrubs (Salix matsudana) from the newly formed WLFZ of the Danjiangkou Reservoir were evaluated. The bacterial community compositions were analyzed by 16S rRNA gene sequencing using a MiSeq platform, and the functions of these communities were assessed via Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis. The results showed that the bacterial communities primarily comprised 362 genera from 24 phyla, such as Proteobacteria, Acidobacteria, Actinobacteria, and Gemmatimonadetes, showing the richness of the community composition. Planting altered the bacterial community composition, with varying effects observed among the different plant types. The bacterial community functional analysis revealed that these bacteria were primarily associated with six biological metabolic pathway categories (e.g., metabolism, genetic information processing, and environmental information processing) with 34 subfunctions, showing the richness of community functions. The planting of M. glyptostroboides, S. matsudana, and C. dactylon improved the metabolic capabilities of bacterial communities. N- and P-cycling gene analysis showed that planting altered the N- and P-cycling metabolic capacities of soil bacteria. The overall N- and P-metabolic capacity was highly similar between C. dactylon and C. zizanioides samples and between S. matsudana and M. glyptostroboides samples. The results of this study provide a preliminary analysis of soil bacterial community structure and function in the WLFZ of the Danjiangkou Reservoir and provides a reference for vegetation construction in this zone.


Assuntos
Microbiota , Chuva , Rizosfera , Abastecimento de Água , Fenômenos Fisiológicos Bacterianos , China , Lagos , Estações do Ano , Microbiologia do Solo
17.
Sci Rep ; 10(1): 16523, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020580

RESUMO

Glutamate dehydrogenase (GDH) is a key enzyme interlinking carbon and nitrogen metabolism. Recent discoveries of the GDH specific role in breast cancer, hyperinsulinism/hyperammonemia (HI/HA) syndrome, and neurodegenerative diseases have reinvigorated interest on GDH regulation, which remains poorly understood despite extensive and long standing studies. Notwithstanding the growing evidence of the complexity of allosteric network behind GDH regulation, identifications of allosteric factors and associated mechanisms are paramount to deepen our understanding of the complex dynamics that regulate GDH enzymatic activity. Combining structural analyses of cryo-electron microscopy data with molecular dynamic simulations, here we show that the cofactor NADH is a key player in the GDH regulation process. Our structural analysis indicates that, binding to the regulatory sites in proximity of the antenna region, NADH acts as a positive allosteric modulator by enhancing both the affinity of the inhibitor GTP binding and inhibition of GDH catalytic activity. We further show that the binding of GTP to the NADH-bound GDH activates a triangular allosteric network, interlinking the inhibitor with regulatory and catalytic sites. This allostery produces a local conformational rearrangement that triggers an anticlockwise rotational motion of interlinked alpha-helices with specific tilted helical extension. This structural transition is a fundamental switch in the GDH enzymatic activity. It introduces a torsional stress, and the associated rotational shift in the Rossmann fold closes the catalytic cleft with consequent inhibition of the deamination process. In silico mutagenesis examinations further underpin the molecular basis of HI/HA dominant mutations and consequent over-activity of GDH through alteration of this allosteric communication network. These results shed new light on GDH regulation and may lay new foundation in the design of allosteric agents.


Assuntos
Regulação Alostérica/fisiologia , Glutamato Desidrogenase/metabolismo , Glutamato Desidrogenase/ultraestrutura , Difosfato de Adenosina/metabolismo , Biofísica/métodos , Biologia Computacional/métodos , Microscopia Crioeletrônica/métodos , Desaminação , Guanosina Trifosfato/metabolismo , Hiperamonemia/genética , Modelos Moleculares , Simulação de Acoplamento Molecular/métodos , Mutação/efeitos dos fármacos , NAD/metabolismo , Conformação Proteica
18.
Front Microbiol ; 10: 1455, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316489

RESUMO

Previous analyses of plant growth-promoting bacteria (PGPB) combined with the remediation of heavy metal pollution in soil have largely been performed under potting or greenhouse conditions, and in situ remediation experiments under field conditions have rarely been reported. In this study, the effects of the metal-resistant PGPB Microbacterium oxydans JYC17, Pseudomonas thivervalensis Y1-3-9, and Burkholderia cepacia J62 on soil Cu pollution under rape remediation were studied in the farmland surrounding the Nanjing Jiuhuashan copper mining region in China. Following inoculation treatment for 50 days, the biomasses of the rape inoculated with strains JYC17, Y1-3-9, and J62 increased, and the total amounts of Cu uptake increased by 113.38, 66.26, and 67.91%, respectively, the translocation factor (TF) of rape inoculated with J62 was 0.85, a significant increase of 70.68%, thus improving the Cu remediation efficiency of the rape. Y1-3-9 and J62 affected the bioavailability of Cu in the soil, and the water-soluble Cu contents were increased by 10.13 and 41.77%, respectively, compared with the control. The antioxidant activities in the rape leaves showed that the tested bacteria increased the contents of antioxidant non-enzymatic substances, including ascorbic acid (ASA) and glutathione (GSH), which were increased by 40.24-91.22% and 9.89-17.67%, respectively, thereby reducing the oxidative stress caused by heavy metals and the contents of thiobarbituric acid-reactive substances (TBARS) and peroxidase (POD). PCR-denaturing gradient gel electrophoresis (PCR-DGGE) was used to analyze the effects of the tested bacteria on the cultivation-dependent and cultivation-independent bacterial communities in the root endosphere and rhizosphere soil of the rape. The sequencing results of the DGGE bands indicated that the tested bacteria colonized the endosphere and rhizosphere, and they became an important component of the cultivation-dependent bacteria. The canonical correspondence analysis (CCA) of the DGGE profile and similarity cluster analysis showed that the tested bacteria affected the cultivation-dependent and cultivation-independent bacterial communities in the root endosphere and rhizosphere. In this experiment, the effects and mechanisms of the combined plant-microbe remediation under field conditions were preliminarily studied, and the results are expected to provide a theoretical basis for future combined remediation experiments.

19.
J Theor Biol ; 251(4): 593-605, 2008 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-18313697

RESUMO

Habitat destruction resulting from human activity is a serious threat to biodiversity. The model developed by Tilman et al. [Tilman, D., May, R.M., Lehman, C.L., Nowak, M.A., 1994. Habitat destruction and the extinction debt. Nature 371, 65-66] has become an important tool for analyzing persistence of species in habitats under destruction. However, most analysis and applications of this model have been limited to the studies of species richness and the order of extinction. In this paper, we address other important issues related to succession of species abundances. We are interested in how the abundance ranking (i.e., the ranking of species according to their relative abundances), the rank-abundance curve and the community diversity alter in habitats under destruction. We treat analytically the model of Tilman et al. and investigate three different scenarios. We consider that before destruction: (i) best competitors are most abundant; (ii) all species are equally abundant; (iii) poor competitors are most abundant. In each case, we have derived explicit expressions for equilibrium species abundances depending on proportion of destroyed sites. Then we follow analytically alteration in the initial abundance ranking, show complex patterns of succession of species abundances and consider transformations in the rank-abundance curve. We demonstrate patterns of self-organization in abundance distributions emerging as a response to habitat destruction. We show non-monotonic dependence of community diversity and community evenness on proportion of destroyed sites.


Assuntos
Biodiversidade , Ecossistema , Densidade Demográfica , Animais , Comportamento Competitivo , Conservação dos Recursos Naturais , Extinção Biológica , Cadeia Alimentar , Modelos Biológicos
20.
J Theor Biol ; 254(2): 350-60, 2008 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-18602122

RESUMO

The vegetative cover in semi-arid lands typically occurs as patches of individual species more or less separated from one another by bare ground. Klausmeier [1999. Regular and irregular patterns in semiarid vegetation. Science 284 (5421), 1826-1828] reported that the vegetation striped patterns can grow lying along the contours of gentle slopes. He has proposed a model of vegetation stripes based on competition for water. In this paper, our main aim is to study the positive feedback effects between the water and biomass on the vegetation spatial pattern formation within a nonsaturated soil, which arises from the suction of water by the roots and processes of water resource redistribution. According to the dispersion relation formula, we discuss the changes of the wavelength, wave speed, as well as the conditions of the spatial pattern formation. Our numerical results show that trees are more sensitive than grasses to the positive feedback function to format the spatial heterogeneous pattern, and the stronger positive feedback increases the parameters region where vegetation bands occur, which indicates that the positive feedback raises the possibility of shift from green to desert states in semi-arid areas for the long term. Our numerical results also show that the positive feedback can increase the migration velocity of the vegetation stripes.


Assuntos
Clima Desértico , Ecossistema , Poaceae/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Biomassa , Modelos Biológicos , Raízes de Plantas/crescimento & desenvolvimento , Transpiração Vegetal , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA