Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Immunol ; 49(1): 144-156, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29762870

RESUMO

Influenza virus infection is an important cause of severe asthma exacerbations, but it remains unclear how a Th1-mediated antiviral response triggers a prototypical Th2 disease. We investigated CD4+ T cells and group 2 innate lymphoid cells (ILC2s) in influenza virus-infected mice. We found that ILC2s accumulated in the lung rapidly after influenza virus infection, but the induction of IL-5 and IL-13 secretion was delayed and concomitant with T cell activation. In an influenza-induced exacerbation of allergic airway inflammation model we noticed an initial reduction of ILC2 numbers and cytokine production in broncho-alveolar lavage compared to chronic house dust mite (HDM)-mediated airway inflammation alone. ILC2s phenotype was characterized by low T1/ST2, ICOS, KLRG1, and CD25 expression, resembling naïve ILC2s. The contribution of ILC2s to type 2 cytokine production in the early stage of the influenza-induced exacerbation was limited. In contrast, T cells showed increased IL-4 and IL-5 production when exposed to both HDM and influenza virus. Upon virus clearance, ILC2s regained an activated T1/ST2high ICOShigh KLRG1high CD25high phenotype paired with cytokine production and were major contributors to the type 2 cytokine milieu. Collectively, our data indicate that both T cells and ILC2s contribute to influenza-induced exacerbation of allergic airway inflammation, but with different kinetics.


Assuntos
Fator de Transcrição GATA3/metabolismo , Hipersensibilidade/imunologia , Inflamação/imunologia , Influenza Humana/imunologia , Linfócitos/imunologia , Infecções por Orthomyxoviridae/imunologia , Orthomyxoviridae/imunologia , Sistema Respiratório/imunologia , Células Th2/imunologia , Animais , Antígenos de Dermatophagoides/imunologia , Células Cultivadas , Citocinas/metabolismo , Progressão da Doença , Fator de Transcrição GATA3/genética , Humanos , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Pyroglyphidae
2.
J Allergy Clin Immunol ; 142(6): 1793-1807, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29486229

RESUMO

BACKGROUND: Group 2 innate lymphoid cells (ILC2s) are major producers of the cytokines driving allergic asthma, and increased ILC2 numbers have been detected in blood and sputum of asthmatic patients. Asthma susceptibility has a strong genetic component, but the underlying mechanisms and whether asthma genetics affect ILC2 biology remain unclear. OBJECTIVE: We sought to study the ILC2 transcriptome and epigenome during airway inflammation (AI) to couple these to genes and genetic variants associated with asthma pathogenesis. METHODS: Mice harboring a reporter for the key ILC2 transcription factor GATA-3 were subjected to IL-33-driven AI, and ILC2s were isolated from bronchoalveolar lavage fluid and mediastinal lymph nodes. Human ILC2s were purified from peripheral blood and activated in vitro. We used RNA sequencing, genome-wide identification of histone-3 lysine-4 dimethylation-marked chromatin, and computational approaches to study the ILC2 transcriptome and epigenome. RESULTS: Activated ILC2s in mice displayed a tissue-specific gene expression signature that emerged from remarkably similar epigenomes. We identified superenhancers implicated in controlling ILC2 identity and asthma-associated genes. More than 300 asthma-associated genetic polymorphisms identified in genome-wide association studies localized to H3K4Me2+ gene regulatory elements in ILC2s. A refined set of candidate causal asthma-associated variants was uniquely enriched in ILC2, but not TH2 cell, regulatory regions. CONCLUSIONS: ILC2s in AI use a flexible epigenome that couples adaptation to new microenvironments with functional plasticity. Importantly, we reveal strong correlations between gene regulatory mechanisms in ILC2s and the genetic basis of asthma, supporting a pathogenic role for ILC2s in patients with allergic asthma.


Assuntos
Asma/genética , Asma/imunologia , Predisposição Genética para Doença , Linfócitos/imunologia , Animais , Epigênese Genética , Fator de Transcrição GATA3/genética , Genoma , Humanos , Imunidade Inata , Camundongos , Sequências Reguladoras de Ácido Nucleico , Transcriptoma
3.
J Allergy Clin Immunol ; 140(4): 1079-1089, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28111308

RESUMO

BACKGROUND: Allergic asthma is characterized by a TH2 response induced by dendritic cells (DCs) that present inhaled allergen. Although the mechanisms by which they instruct TH2 differentiation are still poorly understood, expression of the Notch ligand Jagged on DCs has been implicated in this process. OBJECTIVE: We sought to establish whether Notch signaling induced by DCs is critical for house dust mite (HDM)-driven allergic airway inflammation (AAI) in vivo. METHODS: The induction of Notch ligand expression on DC subsets by HDM was quantified by using quantitative real-time PCR. We used an HDM-driven asthma mouse model to compare the capacity of Jagged 1 and Jagged 2 single- and double-deficient DCs to induce AAI. In addition, we studied AAI in mice with a T cell-specific deletion of recombination signal-binding protein for immunoglobulin Jκ region (RBPJκ), a downstream effector of Notch signaling. RESULTS: HDM exposure promoted expression of Jagged 1, but not Jagged 2, on DCs. In agreement with published findings, in vitro-differentiated and HDM-pulsed Jagged 1 and Jagged 2 double-deficient DCs lacked the capacity to induce AAI. However, after in vivo intranasal sensitization and challenge with HDM, DC-specific Jagged 1 or Jagged 2 single- or double-deficient mice had eosinophilic airway inflammation and a TH2 cell activation phenotype that was not different from that in control littermates. In contrast, RBPJκ-deficient mice did not experience AAI and airway hyperreactivity. CONCLUSION: Our results show that the Notch signaling pathway in T cells is crucial for the induction of TH2-mediated AAI in an HDM-driven asthma model but that expression of Jagged 1 or Jagged 2 on DCs is not required.


Assuntos
Células Dendríticas/imunologia , Hipersensibilidade/imunologia , Proteína Jagged-1/metabolismo , Proteína Jagged-2/metabolismo , Receptores Notch/metabolismo , Células Th2/imunologia , Animais , Antígenos de Dermatophagoides/imunologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Proteína Jagged-1/genética , Proteína Jagged-2/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pyroglyphidae/imunologia , Transdução de Sinais
4.
Eur J Immunol ; 46(6): 1392-403, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27062360

RESUMO

Allergic asthma is a chronic inflammation of the airways mediated by an adaptive type 2 immune response. Upon allergen exposure, group 2 innate lymphoid cells (ILC2s) can be rapidly activated and represent an early innate source of IL-5 and IL-13. Here, we used a house dust mite (HDM)-driven asthma mouse model to study the induction of ILC2s in allergic airway inflammation. In BALF, lungs, and lymph nodes, ILC2 activation is critically dependent on prior sensitization with HDM. Importantly, T cells are required for ILC2 induction, whereby T-cell activation precedes ILC2 induction. During HDM-driven allergic airway inflammation the accumulation of ILC2s in BALF is IL-33 independent, although infiltrating ILC2s produce less cytokines in Il33(-/-) mice. Transfer of in vitro polarized OVA-specific OT-II Th2 cells alone or in combination with Th17 cells followed by OVA and HDM challenge is not sufficient to induce ILC2, despite significant eosinophilic inflammation and T-cell activation. In this asthma model, ILC2s are therefore not an early source of Th2 cytokines, but rather contribute to type 2 inflammation in which Th2 cells play a key role. Taken together, ILC2 induction in HDM-mediated allergic airway inflammation in mice critically depends on activation of T cells.


Assuntos
Alérgenos/imunologia , Asma/etiologia , Imunidade Inata , Pyroglyphidae/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Asma/metabolismo , Asma/patologia , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Imunofenotipagem , Mediadores da Inflamação , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Camundongos , Camundongos Knockout , Fenótipo , Subpopulações de Linfócitos T/metabolismo
6.
Immunology ; 140(3): 281-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23866009

RESUMO

Although allergic asthma is a heterogeneous disease, allergen-specific T helper 2 (Th2) cells producing the key cytokines involved in type 2 inflammation, interleukin-4 (IL-4), IL-5 and IL-13, are thought to play a major role in asthma pathogenesis. This model is challenged by the recent discovery of group 2 innate lymphoid cells (ILC2) that represent a critical innate source of type 2 cytokines. These ILC2 are activated by epithelial cell-derived cytokines, including IL-25 and IL-33, which have been implicated in the initiation of asthma. In this review, we will discuss recent studies supporting a significant role for ILC2 in lung inflammation, with special attention to allergen-induced asthma.


Assuntos
Asma/imunologia , Citocinas/metabolismo , Linfócitos/imunologia , Pneumonia/imunologia , Células Th2/imunologia , Alérgenos/imunologia , Animais , Citocinas/imunologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Humanos , Imunidade Inata
7.
Methods Mol Biol ; 1559: 169-183, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28063044

RESUMO

Allergic asthma is a chronic inflammatory lung disease mediated by type 2 cytokines produced by T helper 2 (Th2) cells as well as the recently discovered group 2 innate lymphoid cells (ILC2). Due to a lack of unique markers, the accurate phenotypic characterization and quantification of ILC2 requires a comprehensive panel of fluorescently labeled antibodies. The markers that are currently used to characterize ILC2 have not been standardized and often vary between research groups, which poses significant challenges when comparing data. Intranasal administration of the pro-inflammatory cytokine IL-33 in mice is associated with strong, Th2 cell-independent ILC2 activation. ILC2 are also activated in mouse models of allergic asthma based on the physiologically relevant house dust mite (HDM) allergen, which parallel eosinophilic airway inflammation observed in asthma patients. Here, we describe the analysis of ILC2 by flow cytometry in these two commonly used allergic airway inflammation models in the mouse.


Assuntos
Alérgenos/administração & dosagem , Asma/imunologia , Hipersensibilidade/imunologia , Imunofenotipagem/métodos , Interleucina-33/administração & dosagem , Linfócitos/imunologia , Administração Intranasal , Animais , Anticorpos/química , Asma/induzido quimicamente , Asma/patologia , Biomarcadores/análise , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Linhagem da Célula/imunologia , Modelos Animais de Doenças , Feminino , Citometria de Fluxo/instrumentação , Humanos , Hipersensibilidade/patologia , Pulmão/imunologia , Pulmão/patologia , Ativação Linfocitária , Linfócitos/classificação , Linfócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Pyroglyphidae/química , Pyroglyphidae/imunologia , Coloração e Rotulagem/métodos
8.
Sci Rep ; 7(1): 8580, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819261

RESUMO

Modified Vaccinia virus Ankara (MVA) is a promising vaccine vector with an excellent safety profile. However, despite extensive pre-clinical and clinical testing, surprisingly little is known about the cellular tropism of MVA, especially in relevant animal species. Here, we performed in vitro, ex vivo and in vivo experiments with recombinant MVA expressing green fluorescent protein (rMVA-GFP). In both human peripheral blood mononuclear cells and mouse lung explants, rMVA-GFP predominantly infected antigen presenting cells. Subsequent in vivo experiments performed in mice, ferrets and non-human primates indicated that preferential targeting of dendritic cells and alveolar macrophages was observed after respiratory administration, although subtle differences were observed between the respective animal species. Following intramuscular injection, rMVA-GFP was detected in interdigitating cells between myocytes, but also in myocytes themselves. These data are important in advancing our understanding of the basis for the immunogenicity of MVA-based vaccines and aid rational vaccine design and delivery strategies.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Leucócitos Mononucleares/imunologia , Vaccinia virus/imunologia , Vacinas Virais/imunologia , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Furões , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Macaca fascicularis , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia , Camundongos , Microscopia Confocal , Células Musculares/imunologia , Células Musculares/metabolismo , Células Musculares/virologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Vaccinia virus/genética , Vaccinia virus/fisiologia
9.
Front Immunol ; 8: 1684, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29250067

RESUMO

Group 2 innate lymphoid cells (ILC2) are implicated in allergic asthma as an early innate source of the type 2 cytokines IL-5 and IL-13. However, their induction in house dust mite (HDM)-mediated airway inflammation additionally requires T cell activation. It is currently unknown whether phenotypic differences exist between ILC2s that are activated in a T cell-dependent or T cell-independent fashion. Here, we compared ILC2s in IL-33- and HDM-driven airway inflammation. Using flow cytometry, we found that surface expression levels of various markers frequently used to identify ILC2s were dependent on their mode of activation, highly variable over time, and differed between tissue compartments, including bronchoalveolar lavage (BAL) fluid, lung, draining lymph nodes, and spleen. Whereas in vivo IL-33-activated BAL fluid ILC2s exhibited an almost uniform CD25+CD127+T1/ST2+ICOS+KLRG1+ phenotype, at a comparable time point after HDM exposure BAL fluid ILC2s had a very heterogeneous surface marker phenotype. A major fraction of HDM-activated ILC2s were CD25lowCD127+T1/ST2low ICOSlowKLRG1low, but nevertheless had the capacity to produce large amounts of type 2 cytokines. HDM-activated CD25low ILC2s in BAL fluid and lung rapidly reverted to CD25high ILC2s upon in vivo stimulation with IL-33. Genome-wide transcriptional profiling of BAL ILC2s revealed ~1,600 differentially expressed genes: HDM-stimulated ILC2s specifically expressed genes involved in the regulation of adaptive immunity through B and T cell interactions, whereas IL-33-stimulated ILC2s expressed high levels of proliferation-related and cytokine genes. In both airway inflammation models ILC2s were present in the lung submucosa close to epithelial cells, as identified by confocal microscopy. In chronic HDM-driven airway inflammation ILC2s were also found inside organized cellular infiltrates near T cells. Collectively, our findings show that ILC2s are phenotypically more heterogeneous than previously thought, whereby their surface marker and gene expression profile are highly dynamic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA