Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Microbiol ; 23(1): 290, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833633

RESUMO

BACKGROUND: Endophytic bacteria provide nutrients and stimulate systemic resistance during seed germination and plant growth and development, and their functional properties in combating various stresses make them a powerful tool in green agricultural production. In this paper we explored the function of the endophyte community in buckwheat seeds in order to provide a theoretical basis for the application and scientific research of endophytes in buckwheat cultivation. We used pulsed electric field (PEF) technology to treat buckwheat seeds, monitored the effect of high-voltage pulse treatment on buckwheat seed germination, and analyzed the diversity of endophytic bacteria in buckwheat seeds using the amplicon sequencing method. RESULTS: PEF treatment promoted root development during buckwheat seed germination. A total of 350 Operational taxonomic units (OTUs) that were assigned into 103 genera were obtained from control and treatment groups using 16SrRNA amplicon sequencing technology. Additionally, PEF treatment also caused a significant decrease in the abundance of Actinobacteria, Proteobacteria, and Bacteroidetes. The abundance of 28 genera changed significantly as well: 11 genera were more abundant, and 17 were less abundant. The number of associated network edges was reduced from 980 to 117, the number of positive correlations decreased by 89.1%, and the number of negative correlations decreased by 86.6%. CONCLUSION: PEF treatment promoted early root development in buckwheat and was able to alter the seed endophytic bacterial community. This study thus makes a significant contribution to the field of endophyte research and to the application of PEF technology in plant cultivation.


Assuntos
Fagopyrum , Bactérias/genética , Sementes/microbiologia , Raízes de Plantas/microbiologia , Bacteroidetes , Endófitos/genética
2.
Arch Virol ; 168(2): 75, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707487

RESUMO

Here, we describe a novel mycovirus, tentatively designated as "Rhizoctonia solani fusarivirus 6" (RsFV6), which was discovered in Rhizoctonia solani AG-3 PT strain 3P-2-2. The virus has a single-stranded positive-sense RNA (+ssRNA) genome of 6141 nucleotides containing two open reading frames (ORFs) and a poly(A) tail. ORF1 encodes a large polypeptide of 1,862 amino acids (aa) with conserved RNA-dependent RNA polymerase (RdRp) and helicase (Hel) domains. ORF2 encodes a putative 167-aa protein of unknown function. BLASTp searches revealed that the ORF1-encoded polypeptide showed the highest sequence similarity (70.67% identity) to that of Rhizoctonia solani fusarivirus 3 (RsFV3), which was isolated from Rhizoctonia solani AG-2-2LP. Multiple sequence alignments and phylogenetic analysis based on RdRp and Hel sequences indicated that RsFV6 could be a novel member of the genus Alphafusarivirus family Fusariviridae.


Assuntos
Micovírus , Vírus de RNA , RNA Viral/genética , Filogenia , Genoma Viral , Rhizoctonia/genética , RNA Polimerase Dependente de RNA/genética , Micovírus/genética , Fases de Leitura Aberta
3.
Cell Biol Toxicol ; 39(5): 2381-2399, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35648318

RESUMO

BACKGROUND: The mutation of BRAF V600E often occurred in melanoma and results in tumorigenesis. BRAF mutation drives hyperactivation of the RAF-MAPK-ERK pathway. The acquired drug resistance upon prolonged use of BRAF inhibitors (such as vemurafenib) still remains the main obstacle. Previously, we have found that E3 ligase Skp2 over-expresses vemurafenib-resistant melanoma cells, and knockdown of Skp2 enhances the anti-tumor effect of vemurafenib. Interestingly, the literature has reported that the selective USP14/UCHL5 inhibitor b-AP15 displays great potential in melanoma therapy; however, the molecular mechanism still remains unknown. METHODS: In vitro, the effect of the combination regimen of vemurafenib (Vem, PLX4032) and b-AP15 on vem-sensitive and vem-resistant melanoma has been investigated by wound healing, colony formation, transwell invasion assay, flow cytometry, lysosome staining, and ROS detection. In vivo, the combination effect on vem-resistant melanoma has been evaluated with a nude mice xenograft tumor model. GST-pulldown and co-immunoprecipitation (co-IP) assays have been applied to investigate the interactions between USP14, UCHL5, and Skp2. Cycloheximide (CHX) assay and ubiquitination assays have been used to explore the effect of USP14 on Skp2 protein half-life and ubiquitination status. RESULTS: In the present study, we have revealed that repression of USP14 sensitizes vemurafenib resistance in melanoma through a previously unappreciated mechanism that USP14 but not UCHL5 stabilizes Skp2, blocking its ubiquitination. K119 on Skp2 is required for USP14-mediated deubiquitination and stabilization of Skp2. Furthermore, the mutated catalytic activity amino acid cysteine (C) 114 on USP14 abrogates stabilization of Skp2. Stabilization of Skp2 is required for USP14 to negatively regulate autophagy. The combination regimen of Skp2 inhibitor vemurafenib and USP14/UCHL5 inhibitor b-AP15 dramatically inhibits cell viability, migration, invasion, and colony formation in vemurafenib-sensitive and vemurafenib-resistant melanoma. Vemurafenib and b-AP15 hold cells in the S phase thus leading to apoptosis as well as the formation of the autophagic vacuole in vemurafenib-resistant SKMEL28 cells. The enhanced proliferation effect of USP14 and Skp2 is mainly due to a more effective reduction of cell apoptosis and autophagy. Further evaluation of various protein alterations has revealed that the increased expression of cleaved-PARP, LC3, and decreased Ki67 are more obvious in the combination of vemurafenib and b-AP15 treatment than those in single-drug treatment. Moreover, the co-treatment of vemurafenib and b-AP15 dramatically inhibits the growth of vemurafenib-resistant melanoma xenograft in vivo. Collectively, our findings have demonstrated that the combination of Skp2 inhibitor and USP14 inhibitor provides a new solution for the treatment of BRAF inhibitor resistance melanoma.


Assuntos
Melanoma , Proteínas Quinases Associadas a Fase S , Animais , Camundongos , Humanos , Vemurafenib/farmacologia , Vemurafenib/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Camundongos Nus , Indóis/farmacologia , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Melanoma/genética , Inibidores de Proteínas Quinases/farmacologia , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/farmacologia , Ubiquitina Tiolesterase/uso terapêutico
4.
J Basic Microbiol ; 63(2): 200-209, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36541736

RESUMO

Tobacco target leaf spot is a leaf disease that seriously affects both the quantity and quality of commercial tobacco crops and has caused huge economic losses in many countries and also pandemics in China since 2006. The anastomosis group-3 (AG-3) pathogen is divided into different subgroups namely AG-3 PT (potato type), AG-3TB (tobacco type), and AG-3 TM (tomato type), based on their host and the combined data from the ribosomal DNA internal transcribed spacer (rDNA-ITS), rDNA intergenic spacer 1 (rDNA-IGS1) regions, and translation elongation factor 1-α (tef-1α) gene. In this study, we collected tobacco leaves showing target spot symptom from four fields in China. We obtained 49 isolates from southwest China (Yunnan Provinces) and six isolates from northeast China (Liaoning Province). Phylogenetic tree based on rDNA-ITS region indicated that 51 isolates (49 isolates from Yunnan and two isolates from Liaoning) and 4 isolates from Liaoning belonged to AG-3 TB and AG-3 TM, respectively.


Assuntos
Nicotiana , Filogenia , China , DNA Ribossômico/genética
5.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958524

RESUMO

Rice blast is a very serious disease caused by Magnaporthe oryzae, which threatens rice production and food supply throughout the world. The avirulence (AVR) genes of rice blast are perceived by the corresponding rice blast resistance (R) genes and prompt specific resistance. A mutation in AVR is a major force for new virulence. Exploring mutations in AVR among M. oryzae isolates from rice production fields could aid assessment of the efficacy and durability of R genes. We studied the probable molecular-evolutionary patterns of AVR-Pib alleles by assaying their DNA-sequence diversification and examining their avirulence to the corresponding Pib resistance gene under natural conditions in the extremely genetically diverse of rice resources of Yunnan, China. PCRs detected results from M. oryzae genomic DNA and revealed that 162 out of 366 isolates collected from Yunnan Province contained AVR-Pib alleles. Among them, 36.1-73.3% isolates from six different rice production areas of Yunnan contained AVR-Pib alleles. Furthermore, 36 (28.6%) out of 126 isolates had a transposable element (TE) insertion in AVR-Pib, which resulted in altered virulence. The TE insertion was identified in isolates from rice rather than from Musa nana Lour. Twelve AVR-Pib haplotypes encoding three novel AVR-Pib variants were identified among the remaining 90 isolates. AVR-Pib alleles evolved to virulent forms from avirulent forms by base substitution and TE insertion of Pot2 and Pot3 in the 5' untranslated region of AVR-Pib. These findings support the hypothesis that functional AVR-Pib possesses varied sequence structures and can escape surveillance by hosts via multiple variation manners.


Assuntos
Magnaporthe , Oryza , Elementos de DNA Transponíveis/genética , Variação Genética , Magnaporthe/genética , China , Oryza/genética , Doenças das Plantas/genética
6.
Arch Virol ; 167(12): 2821-2825, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36261748

RESUMO

The nucleotide sequence of a viral double-stranded RNA (dsRNA) from Rhizoctonia solani AG-4 HGIII strain XMC-IF (designated as "Rhizoctonia solani mitovirus 106", RsMV-106) was determined. The complete sequence was 2794 bp in length with a 57.50% A + U content and contained a large open reading frame (ORF) when the fungal mitochondrial genetic code was used. The ORF potentially encodes a 95.76-kDa protein containing a conserved domain of an RNA-dependent RNA polymerase (RdRp). BLASTp analysis revealed that the RdRp domain of RsMV-106 shared 47.52-73.24% sequence identity with those of viruses of the genus Duamitovirus and was most similar (73.24% identity) to that of Alternaria alternata mitovirus 1 (AaMV1). Phylogenetic analysis showed that RsMV-106 is a novel member of the genus Duamitovirus, family Mitoviridae. This is the first report of the full genome sequence of a mitovirus associated with R. solani AG-4 HGIII.


Assuntos
Micovírus , Vírus de RNA , Filogenia , Genoma Viral , Vírus de RNA/genética , Rhizoctonia/genética , Fases de Leitura Aberta , RNA de Cadeia Dupla , RNA Viral/genética , Micovírus/genética
7.
Environ Toxicol ; 37(8): 2005-2018, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35475590

RESUMO

Inflammation is widely recognized as an essential inducer of epithelial-mesenchymal transition (EMT). Meanwhile, competitive endogenous RNA (ceRNA) has been involved in a variety of disease processes. Therefore, the aim of the current study is to explore the regulation of ceRNA in the PI3K/AKT pathway and EMT mechanism in inflammatory response caused by low molecular weight-polycyclic aromatic hydrocarbons (LMW-PAHs). The A549 cells were treated with an equal mixture of phenanthrene (Phe) and fluorene (Flu), and total RNA was extracted for transcriptome sequencing. The target regulation of ceRNA hsa_circ_0039929/hsa-miR-15b-3p_R-1/FGF2 was further determined for mechanism study. The mixture of Phe and Flu significantly upregulated the expressions of hsa_circ_0039929 and FGF2, down-regulated hsa-miR-15b-3p_R-1, activated the PI3K/AKT pathway and promoted EMT. Mechanically, the overexpression of hsa-miR-15b-3p_R-1 inhibited the expressions of hsa_circ_0039929 and FGF2, reversed the activation of PI3K/AKT signaling pathway by LMW-PAHs, and blocked the occurrence of EMT progression. Furthermore, knockdown of hsa_circ_0039929 could promote the levels of hsa-miR-15b-3p_R-1, while inhibit the expression of FGF2. The effects of hsa_circ_0039929 knockdowns on PI3K/AKT pathways and EMT progress resembled the hsa-miR-15b-3p_R-1 overexpression. All above suggested that ceRNA hsa_circ_0039929/hsa-miR-15b-3p_R-1/FGF2 played an important role in the inflammation and EMT caused by LMW-PAHs.


Assuntos
MicroRNAs , Hidrocarbonetos Policíclicos Aromáticos , Células A549 , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Peso Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Circular/genética
8.
Int J Mol Sci ; 23(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35806121

RESUMO

Magnaporthe oryzae, the causal agent of rice blast disease, produces devastating damage to global rice production. It is urgent to explore novel strategies to overcome the losses caused by this disease. 9-phenanthrol is often used as a transient receptor potential melastatin 4 (TRPM4) channel inhibitor for animals, but we found its fungal toxicity to M. oryzae. Thus, we explored the antimicrobial mechanism through transcriptome and metabolome analyses. Moreover, we found that overexpression of a gene encoding 4-hydroxyphenylpyruvate dioxygenase involved in the tyrosine degradative pathway enhanced the tolerance of 9-phenanthrol in M. oryzae. Thus, our results highlight the potential fungal toxicity mechanism of 9-phenanthrol at metabolic and transcriptomic levels and identify a gene involving 9-phenanthrol alleviation. Importantly, our results demonstrate the novel mechanism of 9-phenanthrol on fungal toxicity that will provide new insights of 9-phenanthrol for application on other organisms.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Magnaporthe , Micotoxinas , Oryza , 4-Hidroxifenilpiruvato Dioxigenase/genética , Ascomicetos , Proteínas Fúngicas/metabolismo , Magnaporthe/genética , Magnaporthe/metabolismo , Metaboloma , Micotoxinas/metabolismo , Oryza/metabolismo , Fenantrenos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Transcriptoma
10.
Plant Cell Environ ; 44(6): 1846-1857, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33576018

RESUMO

Transposable elements exist widely throughout plant genomes and play important roles in plant evolution. Auxin is an important regulator that is traditionally associated with root development and drought stress adaptation. The DEEPER ROOTING 1 (DRO1) gene is a key component of rice drought avoidance. Here, we identified a transposon that acts as an autonomous auxin-responsive promoter and its presence at specific genome positions conveys physiological adaptations related to drought avoidance. Rice varieties with a high and auxin-mediated transcription of DRO1 in the root tip show deeper and longer root phenotypes and are thus better adapted to drought. The INDITTO2 transposon contains an auxin response element and displays auxin-responsive promoter activity; it is thus able to convey auxin regulation of transcription to genes in its proximity. In the rice Acuce, which displays DRO1-mediated drought adaptation, the INDITTO2 transposon was found to be inserted at the promoter region of the DRO1 locus. Transgenesis-based insertion of the INDITTO2 transposon into the DRO1 promoter of the non-adapted rice variety Nipponbare was sufficient to promote its drought avoidance. Our data identify an example of how transposons can act as promoters and convey hormonal regulation to nearby loci, improving plant fitness in response to different abiotic stresses.


Assuntos
Elementos de DNA Transponíveis/genética , Oryza/fisiologia , Proteínas de Plantas/genética , Adaptação Fisiológica/genética , Desidratação , Secas , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Mutação , Oryza/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Plântula/genética , Plântula/fisiologia
11.
Arch Virol ; 166(11): 3229-3232, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34524536

RESUMO

The complete genome sequence of a double-stranded RNA (dsRNA) virus, Rhizoctonia solani dsRNA virus 11 (RsRV11), isolated from Rhizoctonia solani AG-1 IA strain 9-11 was determined. The RsRV11 genome is 9,555 bp in length and contains three conserved domains: structural maintenance of chromosomes (SMC) superfamily, phosphoribulokinase (PRK), and RNA-dependent RNA polymerase (RdRp). The RsRV11 genome has two non-overlapping open reading frames (ORFs). ORF1 is predicted to encode a 204.12-kDa protein that shares low but significant amino acid sequence similarity with a putative protein encoded by Rhizoctonia solani RNA virus HN008 (RsRV-HN008). ORF2 potentially encodes a 132.41-kDa protein that contains the conserved domain of the RdRp. Phylogenetic analysis indicated that RsRV11 clustered with RsRV-HN008 in a separate clade from other virus families. This implies that RsRV11 and RsRV-HN008 should be included in a new mycovirus taxon close to the family Megabirnaviridae and that RsRV11 is a new mycovirus.


Assuntos
Micovírus/genética , Genoma Viral , Filogenia , Rhizoctonia/virologia , China , Micovírus/isolamento & purificação , Fases de Leitura Aberta , RNA de Cadeia Dupla , Rhizoctonia/isolamento & purificação , Proteínas Virais/genética , Zea mays/microbiologia
12.
Environ Toxicol ; 36(1): 95-104, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32856796

RESUMO

Low molecular weight-Polycyclic aromatic hydrocarbons (LMW-PAHs) are ubiquitous environmental pollutants, which may contribute to respiratory diseases. However, studies of the relative mechanisms are limited. This study aimed to explore the effects of two LMW-PAHs [phenanthrene (Phe) and fluorene (Flu)], separately and as binary PAH mixture on oxidative stress and inflammation in A549 cells. Cell viability was firstly detected at various concentrations (200-800 µM) by Phe, Flu, and the mixture of Phe and Flu. ROS level, MDA content, SOD and CAT activities were then determined to evaluate oxidative damage. The protein and mRNA expressions of IL-6, TNF-α, TGF-ß, and the protein content of SP-A were further determined to evaluate inflammation. Results showed that Phe, Flu, and their mixture triggered ROS generation and induced abnormal productions of MDA, SOD, and CAT. And the protein and mRNA expressions of TNF-α and IL-6 were increased by Phe, Flu, and their mixture, respectively. In addition, SP-A was also increased by Phe and Flu, while it was decreased by their mixture at 600 µM. The results demonstrated that Phe, Flu, and their mixture could induce oxidative stress and subsequent inflammation in A549 cells, while combined inflammatory response was stronger than single actions.

13.
Environ Toxicol ; 36(6): 1099-1110, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33547861

RESUMO

Nickel oxide nanoparticles (NiO NPs) causes pulmonary fibrosis via activating transforming growth factor-ß1 (TGF-ß1) in rats, but its upstream regulatory mechanisms are unknown. This study aimed to explore the role of long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) in NiO NPs-induced collagen deposition. Male Wistar rats were intratracheally instilled with NiO NPs (0.015, 0.06, and 0.24 mg/kg b.w.) twice a week for 9 weeks. Human lung adenocarcinoma epithelial cells (A549 cells) were cultured with NiO NPs (25, 50, and 100 µg/ml) to establish collagen deposition model. We discovered that NiO NPs-induced rat pulmonary fibrosis was accompanied by the epithelial-mesenchymal transition (EMT) occurrence and MEG3 down-regulation in rat lung tissues. In cell collagen deposition model, NiO NPs also evoked EMT and decreased MEG3 expression in a dose-dependent manner in A549 cells. By overexpressing MEG3 in A549 cells, we found that MEG3 inhibited the level of TGF-ß1, EMT process and collagen formation. Moreover, our data showed that SB431542 (TGF-ß1 inhibitor) had an inhibitory effect on NiO NPs-induced EMT and collagen formation. Our results indicated that MEG3 inhibited NiO NPs-induced collagen deposition by regulating TGF-ß1-mediated EMT process, which may provide some clues for insighting into the mechanisms of NiO NPs-induced pulmonary fibrosis.


Assuntos
Nanopartículas , Fibrose Pulmonar , RNA Longo não Codificante , Animais , Transição Epitelial-Mesenquimal , Masculino , Níquel , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , RNA Longo não Codificante/genética , Ratos , Ratos Wistar , Fator de Crescimento Transformador beta1/genética
14.
Plant Biotechnol J ; 18(6): 1376-1383, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31742855

RESUMO

Because of the frequent breakdown of major resistance (R) genes, identification of new partial R genes against rice blast disease is an important goal of rice breeding. In this study, we used a core collection of the Rice Diversity Panel II (C-RDP-II), which contains 584 rice accessions and are genotyped with 700 000 single-nucleotide polymorphism (SNP) markers. The C-RDP-II accessions were inoculated with three blast strains collected from different rice-growing regions in China. Genome-wide association study identified 27 loci associated with rice blast resistance (LABRs). Among them, 22 LABRs were not associated with any known blast R genes or QTLs. Interestingly, a nucleotide-binding site leucine-rich repeat (NLR) gene cluster exists in the LABR12 region on chromosome 4. One of the NLR genes is highly conserved in multiple partially resistant rice cultivars, and its expression is significantly up-regulated at the early stages of rice blast infection. Knockout of this gene via CRISPR-Cas9 in transgenic plants partially reduced blast resistance to four blast strains. The identification of this new non-strain specific partial R gene, tentatively named rice blast Partial Resistance gene 1 (PiPR1), provides genetic material that will be useful for understanding the partial resistance mechanism and for breeding durably resistant cultivars against blast disease of rice.


Assuntos
Magnaporthe , Oryza , China , Mapeamento Cromossômico , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Oryza/genética , Doenças das Plantas/genética
15.
Breed Sci ; 70(1): 93-100, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32351308

RESUMO

Fagopyrum (Polygonaceae) is a small genus including less than 30 species, mostly endemic to southern China. The genus includes two cultivated species, common buckwheat F. esculentum and Tartary buckwheat F. tataricum. Fagopyrum is clearly distinguished from other genus in Polygonaceae by the central position of embryo in achene. The genus is divided into two major groups, namely the cymosum group and the urophyllum group, based on morphological characters and molecular systematics. In the last three decades the number of species in the genus has doubled by the discovery of new species by Japanese and Chinese groups. Most of them are revealed to be included in the urophyllum group based on morphological and molecular genetic analyses. Molecular systematic surveys have also detected inappropriate treatment of some non-Fagopyrum species as new species or combination in the genus.

16.
Environ Toxicol ; 35(1): 37-46, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31456356

RESUMO

Phenanthrene (Phe) female rat model was established to explore the effects of Phe on oxidative stress and inflammation. The rats were randomly divided into three groups including control (C), low (L), and high (H) group. Phe was supplied to L and H groups at the dosage of 180 mg/kg and 900 mg/kg orally at first day, and with the dose 90 mg/kg and 450 mg/kg by intraperitoneal injection at the last 2 days. The C group was enriched with the same volume of corn oil. The blood, lung, and liver tissues were collected. The superoxide dismutase (SOD), malonaldehyde (MDA), and 8-hydroxy-2-deoxyguanosine (8-OHdG) were detected to evaluate oxidative stress. The protein and mRNA expressions of interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), transforming growth factor-ß (TGF-ß), and interleukin 10 (IL-10) were detected to evaluate inflammation. Further, the forkhead box transcription factor 3 (Foxp3) was analyzed to hint the injury mechanism of inflammation. The results showed SOD and MDA in lung and liver, and serum 8-OHdG elevated significantly in H groups (P < .05). Meanwhile, there were significant increases in the protein and mRNA expression of TNF-α and IL-6 in lung and liver of H groups (P < .05). In addition, the protein and mRNA expressions of TGF-ß and Foxp3 were all decreased significantly in both lung and liver of H groups (P < .05). Results demonstrated that an obvious change of Phe exposure could induce oxidative stress and inflammation in female rats. This is a first pilot study to explore the association between Phe exposure and oxidative stress and inflammation using a female rat model.


Assuntos
Poluentes Atmosféricos/toxicidade , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , Fenantrenos/toxicidade , Animais , Citocinas/sangue , Citocinas/imunologia , Relação Dose-Resposta a Droga , Feminino , Fígado/imunologia , Fígado/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Projetos Piloto , Distribuição Aleatória , Ratos , Ratos Wistar
17.
Mikrochim Acta ; 187(11): 606, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33052480

RESUMO

An efficient method is reported to prepare endoplasmic reticulum-targetable dual-metallic gold-silver nanoclusters, denoted as ER-Au/Ag nanoclusters (NCs), by virtue of a rationally designed molecular ligand. The prepared ER-Au/Ag NCs possesses red-emitting fluorescence with a strong emission at 622 nm and a high fluorescence quantum yield of 5.1%, which could avoid the influence of biological auto-fluorescence. Further investigation results showed that ER-Au/Ag NCs exhibited superior photostability, minimal cytotoxicity, and ER-targeting capability. Enabled by these meritorious features, ER-Au/Ag NCs have been successfully employed for long-term bioimaging of ER in living cells.Graphical abstract A sensitive non-enzymatic fluorescent glucose probe-based ZnO nanorod decorated with Au nanoparticles.


Assuntos
Retículo Endoplasmático/metabolismo , Corantes Fluorescentes/química , Nanopartículas Metálicas/química , Animais , Fluorescência , Ouro/química , Células HeLa , Humanos , Camundongos , Microscopia Confocal , Microscopia de Fluorescência , Células RAW 264.7 , Prata/química , Sulfonamidas/química , Ácido Tióctico/análogos & derivados
18.
Int J Mol Sci ; 21(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168778

RESUMO

The regulatory mechanisms of pollen development have potential value for applications in agriculture, such as better understanding plant reproductive regularity. Pollen-specific promoters are of vital importance for the ectopic expression of functional genes associated with pollen development in plants. However, there is a limited number of successful applications using pollen-specific promoters in genetic engineering for crop breeding and hybrid generation. Our previous work led to the identification and isolation of the OsSUT3 promoter from rice. In this study, to analyze the effects of different putative regulatory motifs in the OsSUT3 promoter, a series of promoter deletions were fused to a GUS reporter gene and then stably introduced into rice and Arabidopsis. Histochemical GUS analysis of transgenic plants revealed that p385 (from -385 to -1) specifically mediated maximal GUS expression in pollen tissues. The S region (from -385 to -203) was the key region for controlling the pollen-specific expression of a downstream gene. The E1 (-967 to -606), E2 (-202 to -120), and E3 (-119 to -1) regions enhanced ectopic promoter activity to different degrees. Moreover, the p385 promoter could alter the expression pattern of the 35S promoter and improve its activity when they were fused together. In summary, the p385 promoter, a short and high-activity promoter, can function to drive pollen-specific expression of transgenes in monocotyledon and dicotyledon transformation experiments.


Assuntos
Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Especificidade de Órgãos , Oryza/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Pólen/genética , Pólen/crescimento & desenvolvimento , Deleção de Sequência
19.
BMC Plant Biol ; 19(1): 204, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31096914

RESUMO

BACKGROUND: Rice blast disease is one of the most destructive fungal disease of rice worldwide. The avirulence (AVR) genes of Magnaporthe oryzae are recognized by the cognate resistance (R) genes of rice and trigger race-specific resistance. The variation in AVR is one of the major drivers of new races. Detecting the variation in the AVR gene in isolates from a population of Magnaporthe oryzae collected from rice production fields will aid in evaluating the effectiveness of R genes in rice production areas. The Pik gene contains 5 R alleles (Pik, Pikh, Pikp, Pikm and Piks) corresponding to the AVR alleles (AVR-Pik/kh/kp/km/ks) of M. oryzae. The Pik gene specifically recognizes and prevents infections by isolates of M. oryzae that contain AVR-Pik. The molecular variation in AVR-Pik alleles of M. oryzae and Pik alleles of rice remains unclear. RESULTS: We studied the possible evolutionary pathways of AVR-Pik alleles by analyzing their DNA sequence variation and assaying their avirulence to the cognate Pik alleles of resistance genes under field conditions in China. The results of PCR products from genomic DNA showed that 278 of the 366 isolates of M. oryzae collected from Yunnan Province, China, carried AVR-Pik alleles. Among the isolates from six regions of Yunnan, 66.7-90.3% carried AVR-Pik alleles. Moreover, 10 AVR-Pik haplotypes encoding five novel AVR-Pik variants were identified among 201 isolates. The AVR-Pik alleles evolved to virulent from avirulent forms via stepwise base substitution. These findings demonstrate that AVR-Pik alleles are under positive selection and that mutations are responsible for defeating race-specific resistant Pik alleles in nature. CONCLUSIONS: We demonstrated the polymorphism and distribution of AVR-Pik alleles in Yunnan Province, China. By pathogenicity assays used to detect the function of the different haplotypes of AVR-Pik, for the first time, we showed the avoidance and stepwise evolution of AVR-Pik alleles in rice production areas of Yunnan. The functional AVR-Pik possesses diversified sequence structures and is under positive selection in nature.


Assuntos
Genes Fúngicos/genética , Magnaporthe/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , Alelos , Evolução Biológica , Frequência do Gene , Variação Genética , Haplótipos , Magnaporthe/metabolismo , Magnaporthe/patogenicidade
20.
J Exp Bot ; 70(4): 1197-1207, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30576523

RESUMO

Hybrid weakness is a post-zygotic hybridization barrier frequently observed in plants, including rice. In this study, we describe the genomic variation among three temperate japonica rice (Oryza sativa ssp. japonica) varieties 'Aranghyangchalbyeo' ('CH7'), 'Sanghaehyangheolua' ('CH8') and 'Shinseonchalbyeo' ('CH9'), carrying different hybrid weakness genes. The reciprocal progeny obtained from crossing any two varieties displayed characteristic hybrid weakness traits. We mapped and cloned a new locus, Hwc3 (hybrid weakness 3), on chromosome 4. Sequence analysis identified that a long terminal repeat (LTR) retrotransposon was inserted into the promoter region of the Hwc3 gene in 'CH7'. A 4-kb DNA fragment from 'CH7' containing the Hwc3 gene with the inserted LTR retrotransposon was able to induce hybrid weakness in hybrids with 'CH8' plants carrying the Hwc1 gene by genetic complementation. We investigated the differential gene expression profile of F1 plants exhibiting hybrid weakness and detected that the genes associated with energy metabolism were significantly down-regulated compared with the parents. Based on our results, we propose that LTR retrotransposons could be a potential cause of hybrid weakness in intrasubspecific hybrids in japonica rice. Understanding the molecular mechanisms underlying intrasubspecific hybrid weakness is important for increasing our knowledge on reproductive isolation and could have significant implications for rice improvement and hybrid breeding.


Assuntos
Hibridização Genética , Oryza/genética , Retroelementos/genética , Sequências Repetidas Terminais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA