Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Theor Appl Genet ; 137(4): 92, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568320

RESUMO

KEY MESSAGE: A chromosome fragment influencing wheat heading and grain size was identified using mapping of m406 mutant. The study of TaFPF1 in this fragment provides more insights into wheat yield improvement. In recent years, wheat production has faced formidable challenges driven by rapid population growth and climate change, emphasizing the importance of improving specific agronomic traits such as heading date, spike length, and grain size. To identify potential genes for improving these traits, we screened a wheat EMS mutant library and identified a mutant, designated m406, which exhibited a significantly delayed heading date compared to the wild-type. Intriguingly, the mutant also displayed significantly longer spike and larger grain size. Genetic analysis revealed that a single recessive gene was responsible for the delayed heading. Surprisingly, a large 46.58 Mb deletion at the terminal region of chromosome arm 2DS in the mutant was identified through fine mapping and fluorescence in situ hybridization. Thus, the phenotypes of the mutant m406 are controlled by a group of linked genes. This deletion encompassed 917 annotated high-confidence genes, including the previously studied wheat genes Ppd1 and TaDA1, which could affect heading date and grain size. Multiple genes in this region probably contribute to the phenotypes of m406. We further investigated the function of TaFPF1 using gene editing. TaFPF1 knockout mutants showed delayed heading and increased grain size. Moreover, we identified the direct upstream gene of TaFPF1 and investigated its relationship with other important flowering genes. Our study not only identified more genes affecting heading and grain development within this deleted region but also highlighted the potential of combining these genes for improvement of wheat traits.


Assuntos
Agricultura , Triticum , Triticum/genética , Hibridização in Situ Fluorescente , Genes Recessivos , Grão Comestível , Cromossomos
2.
Plant J ; 112(6): 1447-1461, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36345647

RESUMO

Structural chromosome variations (SCVs) are large-scale genomic variations that can be detected by fluorescence in situ hybridization (FISH). SCVs have played important roles in the genome evolution of wheat (Triticum aestivum L.), but little is known about their genetic effects. In this study, a total of 543 wheat accessions from the Chinese wheat mini-core collection and the Shanxi Province wheat collection were used for chromosome analysis using oligonucleotide probe multiplex FISH. A total of 139 SCVs including translocations, pericentric inversions, presence/absence variations (PAVs), and copy number variations (CNVs) in heterochromatin were identified at 230 loci. The distribution frequency of SCVs varied between ecological regions and between landraces and modern cultivars. Structural analysis using SCVs as markers clearly divided the landraces and modern cultivars into different groups. There are very clear instances illustrating alien introgression and wide application of foreign germplasms improved the chromosome diversity of Chinese modern wheat cultivars. A genome-wide association study (GWAS) identified 29 SCVs associated with 12 phenotypic traits, and five (RT4AS•4AL-1DS/1DL•1DS-4AL, Mg2A-3, Mr3B-10, Mr7B-13, and Mr4A-7) of them were further validated using a doubled haploid population and advanced sib-lines, implying the potential value of these SCVs. Importantly, the number of favored SCVs that were associated with agronomic trait improvement was significantly higher in modern cultivars compared to landraces, indicating positive selection in wheat breeding. This study demonstrates the significant effects of SCVs during wheat breeding and provides an efficient method of mining favored SCVs in wheat and other crops.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/genética , Estudo de Associação Genômica Ampla/métodos , Melhoramento Vegetal , Hibridização in Situ Fluorescente , Variações do Número de Cópias de DNA , Cromossomos de Plantas/genética
3.
Proc Natl Acad Sci U S A ; 117(11): 5955-5963, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123089

RESUMO

In plants, the mechanism for ecological sympatric speciation (SS) is little known. Here, after ruling out the possibility of secondary contact, we show that wild emmer wheat, at the microclimatically divergent microsite of "Evolution Canyon" (EC), Mt. Carmel, Israel, underwent triple SS. Initially, it split following a bottleneck of an ancestral population, and further diversified to three isolated populations driven by disruptive ecological selection. Remarkably, two postzygotically isolated populations (SFS1 and SFS2) sympatrically branched within an area less than 30 m at the tropical hot and dry savannoid south-facing slope (SFS). A series of homozygous chromosomal rearrangements in the SFS1 population caused hybrid sterility with the SFS2 population. We demonstrate that these two populations developed divergent adaptive mechanisms against severe abiotic stresses on the tropical SFS. The SFS2 population evolved very early flowering, while the SFS1 population alternatively evolved a direct tolerance to irradiance by improved ROS scavenging activity that potentially accounts for its evolutionary fate with unstable chromosome status. Moreover, a third prezygotically isolated sympatric population adapted on the abutting temperate, humid, cool, and forested north-facing slope (NFS), separated by 250 m from the SFS wild emmer wheat populations. The NFS population evolved multiple resistant loci to fungal diseases, including powdery mildew and stripe rust. Our study illustrates how plants sympatrically adapt and speciate under disruptive ecological selection of abiotic and biotic stresses.


Assuntos
Resistência à Doença/genética , Simpatria/genética , Triticum/genética , Ascomicetos , Basidiomycota , Cromossomos de Plantas , Fluxo Gênico , Genes de Plantas/genética , Homozigoto , Israel , Cariotipagem , Doenças das Plantas/microbiologia , Estresse Fisiológico
4.
Plant J ; 105(4): 978-993, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33210785

RESUMO

A chromosome-specific painting technique has been developed which combines the most recent approaches of the companion disciplines of molecular cytogenetics and genome research. We developed seven oligonucleotide (oligo) pools derivd from single-copy sequences on chromosomes 1 to 7 of barley (Hordeum vulgare L.) and corresponding collinear regions of wheat (Triticum aestivum L.). The seven groups of pooled oligos comprised between 10 986 and 12 496 45-bp monomers, and these then produced stable fluorescence in situ hybridization (FISH) signals on chromosomes of each linkage group of wheat and barley. The pooled oligo probes were applied to high-throughput karyotyping of the chromosomes of other Triticeae species in the genera Secale, Aegilops, Thinopyrum, and Dasypyrum, and the study also extended to some wheat-alien amphiploids and derived lines. We demonstrated that a complete set of whole-chromosome oligo painting probes facilitated the study of inter-species chromosome homologous relationships and visualized non-homologous chromosomal rearrangements in Triticeae species and some wheat-alien species derivatives. When combined with other non-denaturing FISH procedures using tandem-repeat oligos, the newly developed oligo painting techniques provide an efficient tool for the study of chromosome structure, organization, and evolution among any wild Triticeae species with non-sequenced genomes.


Assuntos
Coloração Cromossômica/métodos , Cromossomos de Plantas/genética , Rearranjo Gênico/genética , Hordeum/genética , Hibridização in Situ Fluorescente/métodos , Poaceae/genética , Triticum/genética , Aegilops/genética , Biblioteca Gênica , Ligação Genética/genética , Oligonucleotídeos/genética , Secale/genética , Translocação Genética/genética
5.
Plant Dis ; 106(9): 2447-2454, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35196099

RESUMO

Thinopyrum intermedium (JJJsJsStSt, 2n = 6x = 42), a wild relative of common wheat, possesses many desirable agronomic genes for wheat improvement. The production of wheat-Thinopyrum intermedium introgression lines is a key step for transferring these beneficial genes into wheat. In this study, we characterized three wheat-Thinopyrum intermedium introgression lines TA3681, TA5566, and TA5567 using non-denaturing fluorescence in situ hybridization, genomic in situ hybridization, PCR-based landmark unique gene, and intron targeting markers. Our results showed that TA3681 is a wheat-Thinopyrum intermedium 1St disomic addition line, TA5566 is a wheat-Thinopyrum intermedium non-Robertsonian translocation line carrying two pairs of 3A-7Js translocation chromosomes, and that TA5567 is a wheat-Thinopyrum intermedium non-Robertsonian translocation line carrying a pair of 3A-7Js translocation chromosomes. We developed 13, 36, and 15 Thinopyrum intermedium chromosome-specific markers for detecting the introgressed Thinopyrum chromosomes in TA3681, TA5566, and TA5567, respectively. Stem rust assessment revealed that TA3681 exhibited a high level of seedling resistance to Chinese-prevalent Puccinia graminis f. sp. tritici pathotypes, and both TA5566 and TA5567 were highly resistant to Australian P. graminis f. sp. tritici pathotypes, indicating that Thinopyrum intermedium chromosomes 1St and 7Js might carry new stem rust resistance genes. Therefore, the new identified introgression lines may be useful for improving wheat stem rust resistance.


Assuntos
Basidiomycota , Cromossomos de Plantas , Austrália , Basidiomycota/genética , Cromossomos de Plantas/genética , Hibridização in Situ Fluorescente , Poaceae/genética , Translocação Genética
6.
BMC Plant Biol ; 21(1): 213, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980176

RESUMO

BACKGROUND: The identification of chromosomes among Avena species have been studied by C-banding and in situ hybridization. However, the complicated results from several cytogenetic nomenclatures for identifying oat chromosomes are often contradictory. A universal karyotyping nomenclature system for precise chromosome identification and comparative evolutionary studies would be essential for genus Avena based on the recently released genome sequences of hexaploid and diploid Avena species. RESULTS: Tandem repetitive sequences were predicted and physically located on chromosomal regions of the released Avena sativa OT3098 genome assembly v1. Eight new oligonucleotide (oligo) probes for sequential fluorescence in situ hybridization (FISH) were designed and then applied for chromosome karyotyping on mitotic metaphase spreads of A. brevis, A. nuda, A. wiestii, A. ventricosa, A. fatua, and A. sativa species. We established a high-resolution standard karyotype of A. sativa based on the distinct FISH signals of multiple oligo probes. FISH painting with bulked oligos, based on wheat-barley collinear regions, was used to validate the linkage group assignment for individual A. sativa chromosomes. We integrated our new Oligo-FISH based karyotype system with earlier karyotype nomenclatures through sequential C-banding and FISH methods, then subsequently determined the precise breakage points of some chromosome translocations in A. sativa. CONCLUSIONS: This new universal chromosome identification system will be a powerful tool for describing the genetic diversity, chromosomal rearrangements and evolutionary relationships among Avena species by comparative cytogenetic and genomic approaches.


Assuntos
Avena/classificação , Avena/genética , DNA de Plantas , Diploide , Genoma de Planta , Cariotipagem/classificação , Terminologia como Assunto , Produtos Agrícolas/classificação , Produtos Agrícolas/genética , Análise Citogenética
7.
Planta ; 253(1): 22, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33399998

RESUMO

MAIN CONCLUSION: A physical map of Thinopyrum intermedium chromosome 7J was constructed using translocation mapping, and a new seedling purple coleoptile gene was mapped to the bin of FL 0.35-0.63 of 7JS. Thinopyrum intermedium (2n = 6x = 42, JJJsJsStSt), a wild relative of common wheat, harbors numerous beneficial genes for wheat improvement. Previous studies showed that wheat-Th. intermedium partial amphiploid TAF46 and its derived addition line L1 had a purple coleoptile, which was derived from Th. intermedium chromosome 7J. To identify and physically map the purple coleoptile gene, 12 wheat-Th. intermedium 7J translocation lines were analyzed by sequential multicolor fluorescence in situ hybridization (mc-FISH), PCR-based landmark unique gene (PLUG) and intron targeting (IT) markers. A physical map of the 7J chromosome was constructed, consisting of eight chromosomal bins with 89 markers. Seedling evaluation of the coleoptile colors of all tested materials indicated that the purple coleoptile gene was located to the bin with a fraction length (FL) of 0.35-0.63 on chromosome 7JS. Furthermore, based on the syntenic relationships between Th. intermedium and wheat chromosomes, we developed a new chromosome 7J-specific EST-PCR marker from the chromosomal region corresponding to the purple coleoptile gene through the Triticeae multi-omics database. The approach of designing chromosome-specific markers has facilitated fine mapping of the Thinopyrum-specific purple coleoptile gene, and these translocation lines will be valuable for studying the function of the purple coleoptile gene in anthocyanin biosynthesis.


Assuntos
Cromossomos de Plantas , Genes de Plantas , Poaceae , Triticum , Antocianinas/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cotilédone/genética , Genes de Plantas/genética , Hibridização in Situ Fluorescente , Poaceae/genética , Triticum/genética
8.
Genome ; 64(8): 789-800, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33513072

RESUMO

The perennial species Dasypyrum breviaristatum (genome Vb) contains many potentially valuable genes for the improvement of common wheat. Construction of a detailed karyotype of D. breviaristatum chromosomes will be useful for the detection of Dasypyrum chromatin in wheat background. We established the standard karyotype of 1Vb-7Vb chromosomes through nondenaturing fluorescence in situ hybridization (ND-FISH) technique using 28 oligonucleotide probes from the wheat - D. breviaristatum partial amphiploid TDH-2 (AABBVbVb) and newly identified wheat - D. breviaristatum disomic translocation and addition lines D2138 (6VbS.2VbL), D2547 (4Vb), and D2532 (3VbS.6VbL) by comparative molecular marker analysis. The ND-FISH with multiple oligo probes was conducted on the durum wheat - D. villosum amphiploid TDV-1 and large karyotype differences between D. breviaristatum and D. villosum was revealed. These ND-FISH probes will be valuable for screening the wheat - Dasypyrum derivative lines for chromosome identification, and the newly developed wheat - D. breviaristatum addition lines may broaden the gene pool of wheat breeding. The differences between D. villosum and D. breviaristatum chromosomes revealed by ND-FISH will help us understand evolutionary divergence of repetitive sequences within the genus Dasypyrum.


Assuntos
Cariotipagem , Melhoramento Vegetal , Poaceae , Cromossomos de Plantas/genética , Genômica , Hibridização in Situ Fluorescente , Sondas de Oligonucleotídeos , Poaceae/genética , Triticum/genética
9.
Methods ; 173: 44-51, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31238097

RESUMO

According to the advances of high-throughput sequencing technology, massive microbiome data accumulated from environmental investigations to human studies. The microbiome-wide association studies are to study the relationship between the microbiome and human health or environment. Recently, Deep Neural Networks (DNNs) are encouraging due to their layer-wise learning ability for representation learning. However, DNNs are considered as black boxes and they require a large amount of training data which makes them impractical to conduct microbiome-wide association studies directly. Meanwhile, the microbiome data is high dimension with many features and noise. A single feature selection method for dealing with the kind of dataset is often unstable. In this work, we introduced a deep learning model named Deep Forest to conduct the microbiome-wide association studies and an ensemble feature selection method is proposed to guide microbial biomarkers' identification. The experiments showed that our ensemble feature method based on Deep Forest had good stability and robustness. The results of feature selection could guide the discovery of microbial biomarkers and help to diagnose microbial-related diseases. The code is available at https://github.com/MicroAVA/MWAS-Biomarkers.git.


Assuntos
Biomarcadores , Pesquisa Biomédica/métodos , Estudo de Associação Genômica Ampla/métodos , Microbiota/genética , Humanos , Redes Neurais de Computação
10.
BMC Plant Biol ; 20(1): 134, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32234016

RESUMO

BACKGROUND: Introgression of chromatin from Secale species into common wheat has for decades been a successful strategy for controlling the wheat diseases. The wild Secale species, Secale africanum Stapf., is a valuable source for resistance to foliar disease of wheat. A wheat-S. africanum chromosome 6Rafr substitution line displayed resistance to both powdery mildew and stripe rust at the adult-plant stage. RESULTS: Wheat-S. africanum chromosome 6Rafr deletion and translocation lines were produced and identified by sequential non-denaturing fluorescence in situ hybridization (ND-FISH) using multiple Oligo-based probes. Different ND-FISH patterns were observed between S. cereale 6R and S. africanum 6Rafr. With reference to the physical map of the draft genome sequence of rye inbred line Lo7, a comprehensive PCR marker analysis indicated that insertions and deletions had occurred by random exchange between chromosomes 6R and 6Rafr. A survey of the wheat- S. africanum 6Rafr lines for disease resistance indicated that a powdery mildew resistance gene(s) was present on the long arm of 6Rafr at FL0.85-1.00, and that a stripe rust resistance gene(s) was located in the terminal region of 6RafrS at FL0.95-1.00. The wheat-S. africanum 6Rafr introgression lines also displayed superior agronomic traits, indicating that the chromosome 6Rafr may have little linkage drag in the wheat background. CONCLUSIONS: The combination of molecular and cytogenetic methods allowed to precisely identify the chromosome rearrangements in wheat- S. africanum 6Rafr substitution, deletion and translocation lines, and compare the structural difference between chromosomes 6R and 6Rafr. The wheat- S. africanum 6Rafr lines containing gene(s) for powdery mildew and stripe rust resistance could be used as novel germplasm for wheat breeding by chromosome engineering.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/microbiologia , Secale/genética , Ascomicetos , Basidiomycota , Quimera/genética , Cromatina , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Análise Citogenética , Hibridização Genética , Hibridização in Situ Fluorescente , Doenças das Plantas/genética , Secale/microbiologia , Translocação Genética , Triticum/genética , Triticum/microbiologia
11.
Theor Appl Genet ; 133(4): 1095-1107, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31955232

RESUMO

KEY MESSAGE: A physical map of Secale cereale chromosome 6R was constructed using deletion mapping, and a new stripe rust resistance gene Yr83 was mapped to the deletion bin of FL 0.73-1.00 of 6RL. Rye (Secale cereale L., RR) possesses valuable genes for wheat improvement. In the current study, we report a resistance gene conferring stripe rust resistance effective from seedling to adult plant stages located on chromosome 6R. This chromosome was derived from triticale line T-701 and also carries highly effective resistance to the cereal cyst nematode species Heterodera avenae Woll. A wheat-rye 6R(6D) disomic substitution line exhibited high levels of seedling resistance to Australian pathotypes of the stripe rust (Puccinia striiformis f. sp. tritici; Pst) pathogen and showed an even greater resistance to the Chinese Pst pathotypes in the field. Ten chromosome 6R deletion lines and five wheat-rye 6R translocation lines were developed earlier in the attempt to transfer the nematode resistance gene to wheat and used herein to map the stripe rust resistance gene. These lines were subsequently characterized by sequential multicolor fluorescence in situ hybridization (mc-FISH), genomic in situ hybridization (GISH), mc-GISH, PCR-based landmark unique gene (PLUG), and chromosome 6R-specific length amplified fragment sequencing (SLAF-Seq) marker analyses to physically map the stripe rust resistance gene. The new stripe rust resistance locus was located in a chromosomal bin with fraction length (FL) 0.73-1.00 on 6RL and was named Yr83. A wheat-rye translocation line T6RL (#5) carrying the stripe rust resistance gene will be useful as a new germplasm in breeding for resistance.


Assuntos
Basidiomycota/fisiologia , Cromossomos de Plantas/genética , Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/microbiologia , Secale/genética , Secale/microbiologia , Triticum/genética , Metáfase/genética , Mapeamento Físico do Cromossomo , Doenças das Plantas/genética , Plantas Geneticamente Modificadas , Plântula/microbiologia , Translocação Genética
12.
Planta ; 249(3): 663-675, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30357506

RESUMO

MAIN CONCLUSION: A general distribution of tandem repeats (TRs) in the wheat genome was predicted and a new web page combined with fluorescence in situ hybridization experiments, and the newly developed Oligo probes will improve the resolution for wheat chromosome identification. Comprehensive sequence analysis of tandem repeats (TR) in the wheat reference genome permits discovery and application of TRs for chromosome identification. Genome-wide localization of TRs was identified in the reference sequences of Chinese Spring using Tandem Repeat Finder (TRF). A database of repeats unit size, array number, and physical coverage length of TRs in the wheat genome was built. The distribution of TRs occupied 3-5% of the wheat chromosomes, with non-random dispersal across the A, B, and D genomes. Three classes of TRs surrounding the predicted genes were compared. An optimized computer-assisted website page B2DSC was constructed for the general distribution and chromosomally enriched zones of TR sequences to be displayed graphically. The physical distribution of predicted TRs in the wheat genome by B2DSC matched well with the corresponding hybridization signals obtained with fluorescence in situ hybridization (FISH). We developed 20 oligonucleotide probes representing 20-60 bp lengths of high copy number of TRs and verified by FISH. An integrated physical map of TR-Oligo probes for wheat chromosome identification was constructed. Our results suggest that the combination of both molecular cytogenetics and genomic research will significantly benefit wheat breeding through chromosome manipulation and engineering.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genoma de Planta/genética , Sequências de Repetição em Tandem/genética , Triticum/genética , Hibridização in Situ Fluorescente , Sondas de Oligonucleotídeos/genética
13.
Int J Mol Sci ; 20(14)2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31336736

RESUMO

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating fungal diseases of wheat worldwide. It is essential to discover more sources of stripe rust resistance genes for wheat breeding programs. Specific locus amplified fragment sequencing (SLAF-seq) is a powerful tool for the construction of high-density genetic maps. In this study, a set of 200 recombinant inbred lines (RILs) derived from a cross between wheat cultivars Chuanmai 42 (CH42) and Chuanmai 55 (CH55) was used to construct a high-density genetic map and to identify quantitative trait loci (QTLs) for stripe rust resistance using SLAF-seq technology. A genetic map of 2828.51 cM, including 21 linkage groups, contained 6732 single nucleotide polymorphism markers (SNP). Resistance QTLs were identified on chromosomes 1B, 2A, and 7B; Qyr.saas-7B was derived from CH42, whereas Qyr.saas-1B and Qyr.saas-2A were from CH55. The physical location of Qyr.saas-1B, which explained 6.24-34.22% of the phenotypic variation, overlapped with the resistance gene Yr29. Qyr.saas-7B accounted for up to 20.64% of the phenotypic variation. Qyr.saas-2A, a minor QTL, was found to be a likely new stripe rust resistance locus. A significant additive effect was observed when all three QTLs were combined. The combined resistance genes could be of value in breeding wheat for stripe rust resistance.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Ligação Genética , Hibridização in Situ Fluorescente , Endogamia , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Translocação Genética , Triticum/microbiologia
14.
Cytogenet Genome Res ; 156(2): 117-125, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30308502

RESUMO

Dasypyrum breviaristatum (genome VbVb) contains potentially important traits for commercial wheat production. Chromosome 2Vb of D. breviaristatum carries several desirable agronomic characters, including long spike length as well as enhanced resistance to stripe rust, which are expressed in a common wheat background. In this study, wheat-D. breviaristatum 2Vb deletion lines were produced and identified by fluorescence in situ hybridization (FISH), and 74 molecular markers specific to D. breviaristatum chromosome 2Vb were physically localized in 4 distinct chromosomal regions. New wheat-D. breviaristatum 2Vb translocation lines were also characterized by FISH. The breakpoint of the translocation T3AS.3AL-2VbS was determined by physically mapped molecular markers. Field evaluation revealed that genes affecting plant height and spike length are located on fraction length (FL) 0.65-1.00 of 2VbS, while the stripe rust resistance gene(s) are located on FL 0.40-1.00 of D. breviaristatum chromosome 2VbL. The newly characterized wheat-Dasypyrum chromosomal introgressions are of potential value for the improvement of the yield and disease resistance of wheat.

15.
Genome ; 61(3): 177-185, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29470932

RESUMO

The wheat - Thinopyrum intermedium derived line Z4 has displayed novel and effective stripe rust resistance for over 40 years. This study aimed to precisely identify the chromosome constitution of line Z4 and determine the stripe rust resistance contribution using multicolor fluorescent in situ hybridization (FISH) and molecular marker analysis. The results indicated that the Z4 line (2n = 44) contained two pairs of non-Robertsonian translocations without the 3A chromosomes of wheat. FISH karyotypes of F3 progenies derived from crosses between Z4 and MY11 indicated that the transmission of the translocated chromosomes appeared normal and the number of wheat chromosomes 3A and 3D frequently varied. The FISH signal distribution of a new repetitive probe, named Oligo-3A1, confirmed the physical breakage points on chromosome 3AL incorporated into translocated chromosomes. PLUG markers revealed the breakage points on chromosomes 3A, 7JS, and 3D invloved in the translocated chromosomes, and they were designated as T3DS-3AS.3AL-7JSS and T3AL-7JSS.7JSL. Stripe rust resistances surveys indicated that the proximal region of 7JSS or 7JSL may confer the resistance at the adult plant stage. The precise characterization of the chromosome complements of wheat - Th. intermedium Z4 and derived progenies has demonstrated the importance of combining cytogenetic and molecular approaches in the genomics era for further wheat genetic manipulation and breeding purposes.


Assuntos
Pontos de Quebra do Cromossomo , Resistência à Doença/genética , Translocação Genética , Triticum/genética , Basidiomycota/patogenicidade , Cromossomos de Plantas/genética , Triticum/imunologia , Triticum/microbiologia
16.
Planta ; 245(6): 1121-1135, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28258493

RESUMO

MAIN CONCLUSION: Fluorescence in situ hybridization and molecular markers have confirmed that several chromosomes from Thinopyrum intermedium ssp. trichophorum have been added to a wheat background, which originated from a cross between a wheat- Thinopyrum partial amphiploid and triticale. The lines displayed blue grains and resistance to wheat stripe rust. Thinopyrum intermedium has been used as a valuable resource for improving the disease resistance and yield potential of wheat. With the aim to transfer novel genetic variation from Th. intermedium species for sustainable wheat breeding, a new trigeneric hybrid was produced by crossing an octoploid wheat-Th. intermedium ssp. trichophorum partial amphiploid with hexaploid triticale. Fluorescence in situ hybridization (FISH) revealed that Thinopyrum chromosomes were transmitted preferably and the number of rye chromosomes tended to decrease gradually in the selfed derivatives of the trigeneric hybrids. Four stable wheat-Th. intermedium chromosome substitution, addition and translocation lines were selected, and a 2JS addition line, two substitution lines of 4JS(4B) and 4J(4B), and a small 4J.4B translocation line were identified by FISH and molecular markers. It was revealed that the gene(s) responsible for blue grains may located on the FL0.60-1.00 of long arm of Th. intermedium-derived 4J chromosome. Disease resistance screenings indicated that chromosomes 4JS and 2JS appear to enhance the resistance to stripe rust in the adult plant stage. The new germplasm with Th. intermedium introgression shows promise for utilization of Thinopyrum chromosome segments in future wheat improvement.


Assuntos
Cromossomos de Plantas/genética , Poaceae/genética , Secale/genética , Triticum/genética , Hibridização in Situ Fluorescente
17.
Planta ; 244(4): 865-76, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27290728

RESUMO

MAIN CONCLUSION: New molecular markers were developed for targeting Thinopyrum intermedium 1St#2 chromosome, and novel FISH probe representing the terminal repeats was produced for identification of Thinopyrum chromosomes. Thinopyrum intermedium has been used as a valuable resource for improving the disease resistance and yield potential of wheat. A wheat-Th. intermedium ssp. trichophorum chromosome 1St#2 substitution and translocation has displayed superior grain protein and wet gluten content. With the aim to develop a number of chromosome 1St#2 specific molecular and cytogenetic markers, a high throughput, low-cost specific-locus amplified fragment sequencing (SLAF-seq) technology was used to compare the sequences between a wheat-Thinopyrum 1St#2 (1D) substitution and the related species Pseudoroegneria spicata (St genome, 2n = 14). A total of 5142 polymorphic fragments were analyzed and 359 different SLAF markers for 1St#2 were predicted. Thirty-seven specific molecular markers were validated by PCR from 50 randomly selected SLAFs. Meanwhile, the distribution of transposable elements (TEs) at the family level between wheat and St genomes was compared using the SLAFs. A new oligo-nucleotide probe named Oligo-pSt122 from high SLAF reads was produced for fluorescence in situ hybridization (FISH), and was observed to hybridize to the terminal region of 1St#L and also onto the terminal heterochromatic region of Th. intermedium genomes. The genome-wide markers and repetitive based probe Oligo-pSt122 will be valuable for identifying Thinopyrum chromosome segments in wheat backgrounds.


Assuntos
Cromossomos de Plantas/genética , Glutens/metabolismo , Proteínas de Plantas/metabolismo , Poaceae/genética , Triticum/genética , Sondas de DNA/genética , Elementos de DNA Transponíveis/genética , Marcadores Genéticos/genética , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização Genética , Hibridização in Situ Fluorescente , Melhoramento Vegetal/métodos , Poaceae/metabolismo , Especificidade da Espécie , Triticum/metabolismo
18.
Planta ; 243(5): 1203-12, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26883668

RESUMO

MAIN CONCLUSION: New wheat- Secale africanum chromosome 5R (a) substitution and translocation lines were developed and identified by fluorescence in situ hybridization and molecular markers, and chromosome 5R (a) specific genes responsible for grain hardness were isolated. The wild species, Secale africanum Stapf. (genome R(a)R(a)), serves as a valuable germplasm resource for increasing the diversity of cultivated rye (S. cereale L., genome RR) and providing novel genes for wheat improvement. In the current study, fluorescence in situ hybridization (FISH) and molecular markers were applied to characterize new wheat-S. africanum chromosome 5R(a) derivatives. Labeled rye genomic DNA (GISH) and the Oligo-probes pSc119.2 and pTa535 (FISH) were used to study a wheat-S. africanum amphiploid and a disomic 5R(a) (5D) substitution, and to identify a T5DL.5R(a)S translocation line and 5R(a)S and 5R(a)L isotelosome lines. Twenty-one molecular markers were mapped to chromosome 5R(a) arms which will facilitate future rapid identification of 5R(a) introgressions in wheat backgrounds. Comparative analysis of the molecular markers mapped on 5R(a) with homoeologous regions in wheat confirmed a deletion on the chromosome T5DL.5R(a)S, which suggests that the wheat-S. africanum Robertsonian translocation involving homologous group 5 may not be fully compensating. Complete coding sequences at the paralogous puroindoline-a (Pina) and grain softness protein gene (Gsp-1) loci from S. africanum were cloned and localized onto the short arm of chromosome 5R(a). The S. africanum chromosome 5R(a) substitution and translocation lines showed a reduction in the hardness index, which may be associated with the S. africanum- specific Pina and Gsp-1 gene sequences. The present study reports the production of novel wheat-S. africanum chromosome 5R(a) stripe rust resistant derivatives and new rye-specific molecular markers, which may find application in future use of wild Secale genome resources for grain quality studies and disease resistance breeding.


Assuntos
Cromossomos de Plantas , Secale/genética , Sementes/fisiologia , Triticum/genética , Basidiomycota/patogenicidade , Clonagem Molecular , Resistência à Doença/genética , Grão Comestível/genética , Genes de Plantas , Marcadores Genéticos , Dureza , Hibridização in Situ Fluorescente , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/microbiologia
19.
Int J Mol Sci ; 17(4)2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27110767

RESUMO

The objective of this research was to characterize the high level of resistance to stripe that has been observed in the released wheat cultivar, Chuanmai45. A combination of classic genetic analysis, molecular and cytogenetic methods were used to characterize resistance in an F2 population derived from Chuanmai45 and the susceptible Chuanmai42. Inheritance of resistance was shown to be conferred by two genes in Chuanmai45. Fluorescence in situ hybridization (FISH) was used along with segregation studies to show that one gene was located on a 1RS.1BL translocation. Molecular markers were employed to show that the other locus was located on chromosome 4B. The defeated gene, Yr24/26, on chromosome 1BL was present in the susceptible parent and lines that recombined this gene with the 1RS.1BL translocation were identified. The germplasm, loci, and associated markers identified in this study will be useful for application in breeding programs utilizing marker-assisted selection.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/microbiologia , Triticum/genética , Biomarcadores/metabolismo , Hibridização In Situ , Cariótipo , Translocação Genética
20.
Cytogenet Genome Res ; 147(2-3): 186-94, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26836300

RESUMO

Aegilops mutica Boiss., a diploid species (2n = 2x = 14, TT), has been rarely studied before. In this research, a hexaploid wheat (cv. Chinese Spring)-Ae. mutica partial amphiploid and a wheat-Ae. mutica addition line were characterized by chromosome karyotyping, FISH using oligonucleotides Oligo-pTa535-1, Oligo-pSc119.2-1, and (GAA)8 as probes, and EST-based molecular markers. The results showed that the partial amphiploid strain consisted of 20 pairs of wheat chromosomes and 7 pairs of Ae. mutica chromosomes, with both wheat 7B chromosomes missing. EST-based molecular marker data suggested that the wheat-Ae. mutica addition line carries the 7T chromosome. Resistance tests indicated that both the partial amphiploid and the 7T addition line were highly resistant to powdery mildew, whereas the wheat control line Chinese Spring was highly susceptible, indicating the presence of a potentially new powdery mildew resistance gene on the Ae. mutica 7T chromosome. The karyotype, FISH patterns, and molecular markers can now be used to identify Ae. mutica chromatin in a wheat background, and the 7T addition could be used as a new powdery mildew resistance source for wheat breeding.


Assuntos
Análise Citogenética/métodos , Resistência à Doença/genética , Doenças das Plantas/genética , Poliploidia , Triticum/genética , Ascomicetos/fisiologia , Bandeamento Cromossômico , Diploide , Hibridização in Situ Fluorescente , Cariótipo , Cariotipagem , Doenças das Plantas/microbiologia , Especificidade da Espécie , Triticum/classificação , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA