Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 36(6): e22343, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35535564

RESUMO

Systemic perturbations can drive a neuroimmune cascade after surgical trauma, including affecting the blood-brain barrier (BBB), activating microglia, and contributing to cognitive deficits such as delirium. Delirium superimposed on dementia (DSD) is a particularly debilitating complication that renders the brain further vulnerable to neuroinflammation and neurodegeneration, albeit these molecular mechanisms remain poorly understood. Here, we have used an orthopedic model of tibial fracture/fixation in APPSwDI/mNos2-/- AD (CVN-AD) mice to investigate relevant pathogenetic mechanisms underlying DSD. We conducted the present study in 6-month-old CVN-AD mice, an age at which we speculated amyloid-ß pathology had not saturated BBB and neuroimmune functioning. We found that URMC-099, our brain-penetrant anti-inflammatory neuroprotective drug, prevented inflammatory endothelial activation, breakdown of the BBB, synapse loss, and microglial activation in our DSD model. Taken together, our data link post-surgical endothelial activation, microglial MafB immunoreactivity, and synapse loss as key substrates for DSD, all of which can be prevented by URMC-099.


Assuntos
Delírio , Demência , Animais , Delírio/complicações , Delírio/prevenção & controle , Demência/etiologia , Demência/prevenção & controle , Hipocampo/metabolismo , Camundongos , Piridinas , Pirróis/uso terapêutico
2.
Brain Behav Immun ; 87: 739-750, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32151684

RESUMO

Multiple sclerosis (MS) is an inflammatory, neurodegenerative disease of the CNS characterized by both grey and white matter injury. Microglial activation and a reduction in synaptic density are key features of grey matter pathology that can be modeled with MOG35-55 experimental autoimmune encephalomyelitis (EAE). Complement deposition combined with microglial engulfment has been shown during normal development and in disease as a mechanism for pruning synapses. We tested whether there is excess complement production in the EAE hippocampus and whether complement-dependent synapse loss is a source of degeneration in EAE using C1qa and C3 knockout mice. We found that C1q and C3 protein and mRNA levels were elevated in EAE mice. Genetic loss of C3 protected mice from EAE-induced synapse loss, reduced microglial activation, decreased the severity of the EAE clinical score, and protected memory/freezing behavior after contextual fear conditioning. C1qa KO mice with EAE showed little to no change on these measurements compared to WT EAE mice. Thus, pathologic expression and activation of the early complement pathway, specifically at the level of C3, contributes to hippocampal grey matter pathology in the EAE.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Doenças Neurodegenerativas , Animais , Camundongos , Camundongos Endogâmicos C57BL , Sinapses
3.
Res Sq ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38464247

RESUMO

Norepinephrine (NE) is a potent anti-inflammatory agent in the brain. In Alzheimer's disease (AD), the loss of NE signaling heightens neuroinflammation and exacerbates amyloid pathology. NE inhibits surveillance activity of microglia, the brain's resident immune cells, via their ß2 adrenergic receptors (ß2ARs). Here, we investigate the role of microglial ß2AR signaling in AD pathology in the 5xFAD mouse model of AD. We found that loss of cortical NE projections preceded the degeneration of NE-producing neurons and that microglia in 5xFAD mice, especially those microglia that were associated with plaques, significantly downregulated ß2AR gene expression early in amyloid pathology. Importantly, dampening microglial ß2AR signaling worsened plaque load and the associated neuritic damage, while stimulating microglial ß2AR signaling attenuated amyloid pathology. Our results suggest that microglial ß2AR could be explored as a potential therapeutic target to modify AD pathology.

4.
ACS Appl Nano Mater ; 6(16): 15094-15107, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37649833

RESUMO

Despite limited evidence for infection of SARS-CoV-2 in the central nervous system, cognitive impairment is a common complication reported in "recovered" COVID-19 patients. Identification of the origins of these neurological impairments is essential to inform therapeutic designs against them. However, such studies are limited, in part, by the current status of high-fidelity probes to visually investigate the effects of SARS-CoV-2 on the system of blood vessels and nerve cells in the brain, called the neurovascular unit. Here, we report that nanocrystal quantum dot micelles decorated with spike protein (COVID-QDs) are able to interrogate neurological damage due to SARS-CoV-2. In a transwell co-culture model of the neurovascular unit, exposure of brain endothelial cells to COVID-QDs elicited an inflammatory response in neurons and astrocytes without direct interaction with the COVID-QDs. These results provide compelling evidence of an inflammatory response without direct exposure to SARS-CoV-2-like nanoparticles. Additionally, we found that pretreatment with a neuro-protective molecule prevented endothelial cell damage resulting in substantial neurological protection. These results will accelerate studies into the mechanisms by which SARS-CoV-2 mediates neurologic dysfunction.

5.
Res Sq ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961257

RESUMO

Background: Links between acute lung injury (ALI), infectious disease, and neurological outcomes have been frequently discussed over the past few years, especially due to the COVID-19 pandemic. Yet, much of the cross-communication between organs, particularly the lung and the brain, has been understudied. Here, we have focused on the role of neutrophils in driving changes to the brain endothelium with ensuing microglial activation and neuronal loss in a model of ALI. Methods: We have applied a three-dose paradigm of 10µg/40µl intranasal lipopolysaccharide (LPS) to induce neutrophilia accompanied by proteinaceous exudate in bronchoalveolar lavage fluid (BALF) in adult C57BL/6 mice. Brain endothelial markers, microglial activation, and neuronal cytoarchitecture were evaluated 24hr after the last intranasal dose of LPS or saline. C57BL/6-Ly6g(tm2621(Cre-tdTomato)Arte (Catchup mice) were used to measure neutrophil and blood-brain barrier permeability following LPS exposure with intravital 2-photon imaging. Results: Three doses of intranasal LPS induced robust neutrophilia accompanied by proteinaceous exudate in BALF. ALI triggered central nervous system pathology as highlighted by robust activation of the cerebrovascular endothelium (VCAM1, CD31), accumulation of plasma protein (fibrinogen), microglial activation (IBA1, CD68), and decreased expression of proteins associated with postsynaptic terminals (PSD-95) in the hippocampal stratum lacunosum moleculare, a relay station between the entorhinal cortex and CA1 of the hippocampus. 2-photon imaging of Catchup mice revealed neutrophil homing to the cerebral endothelium in the blood-brain barrier and neutrophil extravasation from cerebral vasculature 24hr after the last intranasal treatment. Conclusions: Overall, these data demonstrate ensuing brain pathology resulting from ALI, highlighting a key role for neutrophils in driving brain endothelial changes and subsequent neuroinflammation. This paradigm may have a considerable translational impact on understanding how infectious disease with ALI can lead to neurodegeneration, particularly in the elderly.

6.
bioRxiv ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37905036

RESUMO

Background: Links between acute lung injury (ALI), infectious disease, and neurological outcomes have been frequently discussed over the past few years, especially due to the COVID-19 pandemic. Yet, much of the cross-communication between organs, particularly the lung and the brain, has been understudied. Here, we have focused on the role of neutrophils in driving changes to the brain endothelium with ensuing microglial activation and neuronal loss in a model of ALI. Methods: We have applied a three-dose paradigm of 10µg/40µl intranasal lipopolysaccharide (LPS) to induce neutrophilia accompanied by proteinaceous exudate in bronchoalveolar lavage fluid (BALF) in adult C57BL/6 mice. Brain endothelial markers, microglial activation, and neuronal cytoarchitecture were evaluated 24hr after the last intranasal dose of LPS or saline. C57BL/6-Ly6g(tm2621(Cre-tdTomato)Arte (Catchup mice) were used to measure neutrophil and blood-brain barrier permeability following LPS exposure with intravital 2-photon imaging. Results: Three doses of intranasal LPS induced robust neutrophilia accompanied by proteinaceous exudate in BALF. ALI triggered central nervous system pathology as highlighted by robust activation of the cerebrovascular endothelium (VCAM1, CD31), accumulation of plasma protein (fibrinogen), microglial activation (IBA1, CD68), and decreased expression of proteins associated with postsynaptic terminals (PSD-95) in the hippocampal stratum lacunosum moleculare, a relay station between the entorhinal cortex and CA1 of the hippocampus. 2-photon imaging of Catchup mice revealed neutrophil homing to the cerebral endothelium in the blood-brain barrier and neutrophil extravasation from cerebral vasculature 24hr after the last intranasal treatment. Conclusions: Overall, these data demonstrate ensuing brain pathology resulting from ALI, highlighting a key role for neutrophils in driving brain endothelial changes and subsequent neuroinflammation. This paradigm may have a considerable translational impact on understanding how infectious disease with ALI can lead to neurodegeneration, particularly in the elderly.

7.
Front Immunol ; 12: 607641, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936031

RESUMO

The Sez6 family consists of Sez6, Sez6L, and Sez6L2. Its members are expressed throughout the brain and have been shown to influence synapse numbers and dendritic morphology. They are also linked to various neurological and psychiatric disorders. All Sez6 family members contain 2-3 CUB domains and 5 complement control protein (CCP) domains, suggesting that they may be involved in complement regulation. We show that Sez6 family members inhibit C3b/iC3b opsonization by the classical and alternative pathways with varying degrees of efficacy. For the classical pathway, Sez6 is a strong inhibitor, Sez6L2 is a moderate inhibitor, and Sez6L is a weak inhibitor. For the alternative pathway, the complement inhibitory activity of Sez6, Sez6L, and Sez6L2 all equaled or exceeded the activity of the known complement regulator MCP. Using Sez6L2 as the representative family member, we show that it specifically accelerates the dissociation of C3 convertases. Sez6L2 also functions as a cofactor for Factor I to facilitate the cleavage of C3b; however, Sez6L2 has no cofactor activity toward C4b. In summary, the Sez6 family are novel complement regulators that inhibit C3 convertases and promote C3b degradation.


Assuntos
Convertases de Complemento C3-C5/metabolismo , Complemento C3b/imunologia , Fibrinogênio/metabolismo , Proteínas de Membrana/metabolismo , Complemento C3b/metabolismo , Proteínas Inativadoras do Complemento/genética , Proteínas Inativadoras do Complemento/metabolismo , Via Alternativa do Complemento/efeitos dos fármacos , Via Clássica do Complemento/efeitos dos fármacos , Expressão Gênica , Humanos , Imuno-Histoquímica , Proteínas de Membrana/genética , Proteínas de Membrana/farmacologia , Proteólise , Proteínas Recombinantes de Fusão
8.
Neuron ; 108(4): 784-796.e3, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33022226

RESUMO

Mordes et al. (2020) did not detect the survival or motor phenotypes in C9orf72 BAC transgenic mice originally described by Liu et al. (2016). We discuss methodological differences between the Mordes and Liu studies, several additional studies in which survival and motor phenotypes were found, and possible environmental and genetic effects. First, Nguyen et al. (2020) showed robust ALS/FTD phenotypes in C9-BAC versus non-transgenic (NT) mice and that α-GA1 treatment improved survival, behavior, and neurodegeneration. The groups of Gelbard and Saxena also show decreased survival of C9-BAC versus NT mice and neuropathological and behavioral deficits similar to those shown by Liu et al. (2016). Although FVB/N mice can have seizures, increases in seizure severity and death of C9 and NT animals, which may mask C9 disease phenotypes, have been observed in recent C9-500 FVB/NJ-bred cohorts. In summary, we provide an update on phenotypes seen in FVB C9-BAC mice and additional details to successfully use this model. This Matters Arising Response paper addresses the Mordes et al. (2020) Matters Arising paper, published concurrently in Neuron.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Esclerose Lateral Amiotrófica/genética , Animais , Proteína C9orf72/genética , Expansão das Repetições de DNA , Modelos Animais de Doenças , Demência Frontotemporal/genética , Camundongos , Camundongos Transgênicos , Fenótipo
9.
eNeuro ; 5(6)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30627663

RESUMO

Treatments to stop gray matter degeneration are needed to prevent progressive disability in multiple sclerosis (MS). We tested whether inhibiting mixed-lineage kinases (MLKs), which can drive inflammatory microglial activation and neuronal degeneration, could protect hippocampal synapses in C57BL/6 mice with experimental autoimmune encephalomyelitis (EAE), a disease model that recapitulates the excitatory synaptic injury that occurs widely within the gray matter in MS. URMC-099, a broad spectrum MLK inhibitor with additional activity against leucine-rich repeat kinase 2 (LRRK2) and other kinases, prevented loss of PSD95-positive postsynaptic structures, shifted activated microglia toward a less inflammatory phenotype, and reversed deficits in hippocampal-dependent contextual fear conditioning in EAE mice when administered after the onset of motor symptoms. A narrow spectrum inhibitor designed to be highly selective for MLK3 failed to protect synapses in EAE hippocampi, and could not rescue cultured neurons from trophic deprivation in an in vitro model of MLK-driven neuronal degeneration. These results suggest that URMC-099 may have potential as a neuroprotective treatment in MS and demonstrate that a broad spectrum of inhibition against a combination of MLK and other kinases is more effective in neuroinflammatory disease than selectively targeting a single kinase.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Hipocampo/patologia , Fármacos Neuroprotetores/uso terapêutico , Piridinas/uso terapêutico , Pirróis/uso terapêutico , Sinapses/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Condicionamento Psicológico/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/fisiopatologia , Inibidores Enzimáticos/uso terapêutico , Medo/efeitos dos fármacos , Medo/psicologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Glicoproteína Mielina-Oligodendrócito/toxicidade , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Gânglio Cervical Superior/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA