Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Genet Metab Rep ; 39: 101088, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38736698

RESUMO

Isovaleric acidemia (IVA) is a rare autosomal recessive disorder that manifests as a deficiency of isovaleryl-CoA dehydrogenase (IVD), a key enzyme in leucine metabolism. The clinical presentations associated with IVD deficiency are variable and include feeding intolerance, vomiting, metabolic acidosis, ketonemia, "sweaty feet" odor, lethargy, coma and even death. Tandem mass spectrometry (MS/MS) and gas chromatography-mass spectrometry (GC/MS) methods were used to perform organic acid analysis of blood and urine samples from IVA patients, and the genetic analysis included next generation sequencing (NGS) and Sanger sequencing of the IVD gene. Here, we report the case of an almost seven-year-old male patient from a Chinese family who was asymptomatic during the newborn period, including the clinical manifestations and examination results. Genetic analysis revealed a previously unreported compound heterozygous variant in the IVD gene: c.593G > C (p.W198S) and c.859C > T (p.R287W).

2.
ACS Chem Neurosci ; 15(16): 3022-3033, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39026168

RESUMO

Exosomes have shown good potential for alleviating neurological deficits and delaying memory deterioration, but the neuroprotective effects of exosomes remain unknown. Methylmalonic acidemia is a metabolic disorder characterized by the accumulation of methylmalonic acid (MMA) in various tissues that inhibits neuronal survival and function, leading to accelerated neurological deterioration. Effective therapies to mitigate these symptoms are lacking. The purpose of this study was to explore the neuroprotective effects of plasma exosomes on cells and a mouse model of MMA-induced injury. We evaluated the ability of plasma exosomes to reduce the neuronal apoptosis, cross the blood-brain barrier, and affect various parameters related to neuronal function. MMA promoted cell apoptosis, disrupted the metabolic balance, and altered the expression of B-cell lymphoma-2 (Bcl-2), Bcl2-associated X (Bax), and synaptophysin-1 (Syp-1), and these changes may be involved in MMA-induced neuronal apoptosis. Additionally, plasma exosomes normalized learning and memory and protected against MMA-induced neuronal apoptosis. Our findings indicate that neurological deficits are linked to the pathogenesis of methylmalonic acidemia, and healthy plasma exosomes may exert neuroprotective and therapeutic effects by altering the expression of exosomal microRNAs, facilitating neuronal functional recovery in the context of this inherited metabolic disease. Intravenous plasma-derived exosome treatment may be a novel clinical therapeutic strategy for methylmalonic acidemia.


Assuntos
Apoptose , Exossomos , Hipocampo , Ácido Metilmalônico , Neurônios , Fármacos Neuroprotetores , Animais , Exossomos/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Hipocampo/metabolismo , Camundongos , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Erros Inatos do Metabolismo dos Aminoácidos
3.
Cancer Biol Med ; 21(2)2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38172525

RESUMO

OBJECTIVE: Neutrophils are one of the most predominant infiltrating leukocytes in lung cancer tissues and are associated with lung cancer progression. How neutrophils promote lung cancer progression, however, has not been established. METHODS: Kaplan-Meier plotter online analysis and tissue immunohistochemistry were used to determine the relationship between neutrophils and overall survival in lung cancer patients. The effect of neutrophils on lung cancer was determined using the Transwell migration assay, a proliferation assay, and a murine tumor model. Gene knockdown was used to determine poly ADP-ribose polymerase (PARP)-1 function in lung cancer-educated neutrophils. Western blot analysis and gelatin zymography were used to demonstrate the correlation between PARP-1 and matrix metallopeptidase 9 (MMP-9). Immunoprecipitation coupled to mass spectrometry (IP/MS) was used to identify the proteins interacting with PARP-1. Co-immunoprecipitation (Co-IP) was used to confirm that PARP-1 interacts with arachidonate 5-lipooxygenase (ALOX5). Neutrophil PARP-1 blockage by AG14361 rescued neutrophil-promoted lung cancer progression. RESULTS: An increased number of infiltrating neutrophils was negatively associated with overall survival in lung cancer patients (P < 0.001). Neutrophil activation promoted lung cancer cell invasion, migration, and proliferation in vitro, and murine lung cancer growth in vivo. Mechanistically, PARP-1 was shown to be involved in lung cancer cell-induced neutrophil activation to increase MMP-9 expression through interacting and stabilizing ALOX5 by post-translational protein modification (PARylation). Blocking PARP-1 by gene knockdown or AG14361 significantly decreased ALOX5 expression and MMP-9 production, and eliminated neutrophil-mediated lung cancer cell invasion and in vivo tumor growth. CONCLUSIONS: We identified a novel mechanism by which PARP-1 mediates lung cancer cell-induced neutrophil activation and PARylates ALOX5 to regulate MMP-9 expression, which exacerbates lung cancer progression.


Assuntos
Benzodiazepinas , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Araquidonato 5-Lipoxigenase/uso terapêutico , Azulenos , Linhagem Celular Tumoral , Pulmão , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/uso terapêutico , Invasividade Neoplásica , Processos Neoplásicos , Neutrófilos/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases
4.
iScience ; 27(1): 108597, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38179061

RESUMO

CD1d-restricted invariant NKT (iNKT) cells play a critical role in tumor immunity. However, the scarcity and limited persistence restricts their development and clinical application. Here, we demonstrated that iNKT cells could be efficiently expanded using modified cytokines combination from peripheral blood mononuclear cells. Introduction of IL-21 significantly increased the frequency of CD62L-positive memory-like iNKT cells. iNKT cells armoring with B7H3-targeting second generation CAR and IL-21 showed potent tumor cell killing activity. Moreover, co-expression of IL-21 promoted the activation of Stat3 signaling and reduced the expression of exhaustion markers in CAR-iNKT cells in vitro. Most importantly, IL-21-arming significantly prolonged B7H3 CAR-iNKT cell proliferation and survival in vivo, thus improving their therapeutic efficacy in mouse renal cancer xerograph models without observed cytokine-related adverse events. In summary, these results suggest that B7H3 CAR-iNKT armored with IL-21 is a promising therapeutic strategy for cancer treatment.

5.
bioRxiv ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38659797

RESUMO

Background: LRRK2-targeting therapeutics that inhibit LRRK2 kinase activity have advanced to clinical trials in idiopathic Parkinson's disease (iPD). LRRK2 phosphorylates Rab10 on endolysosomes in phagocytic cells to promote some types of immunological responses. The identification of factors that regulate LRRK2-mediated Rab10 phosphorylation in iPD, and whether phosphorylated-Rab10 levels change in different disease states, or with disease progression, may provide insights into the role of Rab10 phosphorylation in iPD and help guide therapeutic strategies targeting this pathway. Methods: Capitalizing on past work demonstrating LRRK2 and phosphorylated-Rab10 interact on vesicles that can shed into biofluids, we developed and validated a high-throughput single-molecule array assay to measure extracellular pT73-Rab10. Ratios of pT73-Rab10 to total Rab10 measured in biobanked serum samples were compared between informative groups of transgenic mice, rats, and a deeply phenotyped cohort of iPD cases and controls. Multivariable and weighted correlation network analyses were used to identify genetic, transcriptomic, clinical, and demographic variables that predict the extracellular pT73-Rab10 to total Rab10 ratio. Results: pT73-Rab10 is absent in serum from Lrrk2 knockout mice but elevated by LRRK2 and VPS35 mutations, as well as SNCA expression. Bone-marrow transplantation experiments in mice show that serum pT73-Rab10 levels derive primarily from circulating immune cells. The extracellular ratio of pT73-Rab10 to total Rab10 is dynamic, increasing with inflammation and rapidly decreasing with LRRK2 kinase inhibition. The ratio of pT73-Rab10 to total Rab10 is elevated in iPD patients with greater motor dysfunction, irrespective of disease duration, age, sex, or the usage of PD-related or anti-inflammatory medications. pT73-Rab10 to total Rab10 ratios are associated with neutrophil activation, antigenic responses, and the suppression of platelet activation. Conclusions: The extracellular ratio of pT73-Rab10 to total Rab10 in serum is a novel pharmacodynamic biomarker for LRRK2-linked innate immune activation associated with disease severity in iPD. We propose that those iPD patients with higher serum pT73-Rab10 levels may benefit from LRRK2-targeting therapeutics to mitigate associated deleterious immunological responses.

6.
Mol Neurodegener ; 19(1): 47, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862989

RESUMO

BACKGROUND: LRRK2-targeting therapeutics that inhibit LRRK2 kinase activity have advanced to clinical trials in idiopathic Parkinson's disease (iPD). LRRK2 phosphorylates Rab10 on endolysosomes in phagocytic cells to promote some types of immunological responses. The identification of factors that regulate LRRK2-mediated Rab10 phosphorylation in iPD, and whether phosphorylated-Rab10 levels change in different disease states, or with disease progression, may provide insights into the role of Rab10 phosphorylation in iPD and help guide therapeutic strategies targeting this pathway. METHODS: Capitalizing on past work demonstrating LRRK2 and phosphorylated-Rab10 interact on vesicles that can shed into biofluids, we developed and validated a high-throughput single-molecule array assay to measure extracellular pT73-Rab10. Ratios of pT73-Rab10 to total Rab10 measured in biobanked serum samples were compared between informative groups of transgenic mice, rats, and a deeply phenotyped cohort of iPD cases and controls. Multivariable and weighted correlation network analyses were used to identify genetic, transcriptomic, clinical, and demographic variables that predict the extracellular pT73-Rab10 to total Rab10 ratio. RESULTS: pT73-Rab10 is absent in serum from Lrrk2 knockout mice but elevated by LRRK2 and VPS35 mutations, as well as SNCA expression. Bone-marrow transplantation experiments in mice show that serum pT73-Rab10 levels derive primarily from circulating immune cells. The extracellular ratio of pT73-Rab10 to total Rab10 is dynamic, increasing with inflammation and rapidly decreasing with LRRK2 kinase inhibition. The ratio of pT73-Rab10 to total Rab10 is elevated in iPD patients with greater motor dysfunction, irrespective of disease duration, age, sex, or the usage of PD-related or anti-inflammatory medications. pT73-Rab10 to total Rab10 ratios are associated with neutrophil degranulation, antigenic responses, and suppressed platelet activation. CONCLUSIONS: The extracellular serum ratio of pT73-Rab10 to total Rab10 is a novel pharmacodynamic biomarker for LRRK2-linked innate immune activation associated with disease severity in iPD. We propose that those iPD patients with higher serum pT73-Rab10 levels may benefit from LRRK2-targeting therapeutics that mitigate associated deleterious immunological responses.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson/sangue , Doença de Parkinson/metabolismo , Animais , Humanos , Camundongos , Ratos , Proteínas rab de Ligação ao GTP/metabolismo , Inflamação/metabolismo , Feminino , Fosforilação , Camundongos Transgênicos , Masculino , Pessoa de Meia-Idade , Idoso , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA