Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2318783121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588412

RESUMO

Communication between insects and plants relies on the exchange of bioactive molecules that traverse the species interface. Although proteinic effectors have been extensively studied, our knowledge of other molecules involved in this process remains limited. In this study, we investigate the role of salivary microRNAs (miRNAs) from the rice planthopper Nilaparvata lugens in suppressing plant immunity. A total of three miRNAs were confirmed to be secreted into host plants during insect feeding. Notably, the sequence-conserved miR-7-5P is specifically expressed in the salivary glands of N. lugens and is secreted into saliva, distinguishing it significantly from homologues found in other insects. Silencing miR-7-5P negatively affects N. lugens feeding on rice plants, but not on artificial diets. The impaired feeding performance of miR-7-5P-silenced insects can be rescued by transgenic plants overexpressing miR-7-5P. Through target prediction and experimental testing, we demonstrate that miR-7-5P targets multiple plant genes, including the immune-associated bZIP transcription factor 43 (OsbZIP43). Infestation of rice plants by miR-7-5P-silenced insects leads to the increased expression of OsbZIP43, while the presence of miR-7-5P counteracts this upregulation effect. Furthermore, overexpressing OsbZIP43 confers plant resistance against insects which can be subverted by miR-7-5P. Our findings suggest a mechanism by which herbivorous insects have evolved salivary miRNAs to suppress plant immunity, expanding our understanding of cross-kingdom RNA interference between interacting organisms.


Assuntos
Hemípteros , MicroRNAs , Oryza , Animais , Interferência de RNA , MicroRNAs/genética , MicroRNAs/metabolismo , Saliva , Hemípteros/fisiologia , Imunidade Vegetal/genética , Oryza/genética
2.
Proc Natl Acad Sci U S A ; 121(14): e2315982121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38536757

RESUMO

Throughout evolution, arboviruses have developed various strategies to counteract the host's innate immune defenses to maintain persistent transmission. Recent studies have shown that, in addition to bacteria and fungi, the innate Toll-Dorsal immune system also plays an essential role in preventing viral infections in invertebrates. However, whether the classical Toll immune pathway is involved in maintaining the homeostatic process to ensure the persistent and propagative transmission of arboviruses in insect vectors remain unclear. In this study, we revealed that the transcription factor Dorsal is actively involved in the antiviral defense of an insect vector (Laodelphax striatellus) by regulating the target gene, zinc finger protein 708 (LsZN708), which mediates downstream immune-related effectors against infection with the plant virus (Rice stripe virus, RSV). In contrast, an antidefense strategy involving the use of the nonstructural-protein (NS4) to antagonize host antiviral defense through competitive binding to Dorsal from the MSK2 kinase was employed by RSV; this competitive binding inhibited Dorsal phosphorylation and reduced the antiviral response of the host insect. Our study revealed the molecular mechanism through which Toll-Dorsal-ZN708 mediates the maintenance of an arbovirus homeostasis in insect vectors. Specifically, ZN708 is a newly documented zinc finger protein targeted by Dorsal that mediates the downstream antiviral response. This study will contribute to our understanding of the successful transmission and spread of arboviruses in plant or invertebrate hosts.


Assuntos
Arbovírus , Hemípteros , Oryza , Tenuivirus , Animais , Arbovírus/genética , Hemípteros/fisiologia , Tenuivirus/fisiologia , Insetos Vetores , Antivirais/metabolismo , Oryza/genética , Doenças das Plantas
3.
PLoS Pathog ; 19(3): e1011266, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36928081

RESUMO

The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is an evolutionarily conserved signaling pathway that can regulate various biological processes. However, the role of JAK-STAT pathway in the persistent viral infection in insect vectors has rarely been investigated. Here, using a system that comprised two different plant viruses, Rice stripe virus (RSV) and Rice black-streaked dwarf virus (RBSDV), as well as their insect vector small brown planthopper, we elucidated the regulatory mechanism of JAK-STAT pathway in persistent viral infection. Both RSV and RBSDV infection activated the JAK-STAT pathway and promoted the accumulation of suppressor of cytokine signaling 5 (SOCS5), an E3 ubiquitin ligase regulated by the transcription factor STAT5B. Interestingly, the virus-induced SOCS5 directly interacted with the anti-apoptotic B-cell lymphoma-2 (BCL2) to accelerate the BCL2 degradation through the 26S proteasome pathway. As a result, the activation of apoptosis facilitated persistent viral infection in their vector. Furthermore, STAT5B activation promoted virus amplification, whereas STAT5B suppression inhibited apoptosis and reduced virus accumulation. In summary, our results reveal that virus-induced JAK-STAT pathway regulates apoptosis to promote viral infection, and uncover a new regulatory mechanism of the JAK-STAT pathway in the persistent plant virus transmission by arthropod vectors.


Assuntos
Tenuivirus , Viroses , Animais , Janus Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Tenuivirus/metabolismo , Insetos Vetores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
4.
BMC Genomics ; 25(1): 53, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212677

RESUMO

BACKGROUND: Saliva plays a crucial role in shaping the feeding behavior of insects, involving processes such as food digestion and the regulation of interactions between insects and their hosts. Cyrtorhinus lividipennis serves as a predominant natural enemy of rice pests, while Apolygus lucorum, exhibiting phytozoophagous feeding behavior, is a destructive agricultural pest. In this study, a comparative transcriptome analysis, incorporating the published genomes of C.lividipennis and A.lucorum, was conducted to reveal the role of salivary secretion in host adaptation. RESULTS: In contrast to A.lucorum, C.lividipennis is a zoophytophagous insect. A de novo genome analysis of C.lividipennis yielded 19,706 unigenes, including 16,217 annotated ones. On the other hand, A.lucorum had altogether 20,111 annotated genes, as obtained from the published official gene set (20,353 unigenes). Functional analysis of the top 1,000 salivary gland (SG)-abundant genes in both insects revealed that the SG was a dynamically active tissue engaged in protein synthesis and secretion. Predictions of other tissues and signal peptides were compared. As a result, 94 and 157 salivary proteins were identified in C.lividipennis and A.lucorum, respectively, and were categorized into 68 and 81 orthogroups. Among them, 26 orthogroups were shared, potentially playing common roles in digestion and detoxification, including several venom serine proteases. Furthermore, 42 and 55 orthogroups were exclusive in C.lividipennis and A.lucorum, respectively, which were exemplified by a hyaluronidase in C.lividipennis that was associated with predation, while polygalacturonases in A.lucorum were involved in mesophyll-feeding patterns. CONCLUSIONS: Findings in this study provide a comprehensive insight into saliva secretions in C.lividipennis and A.lucorum via a transcriptome approach, reflecting the intricate connections between saliva secretions and feeding behaviors. It is found that conserved salivary secretions are involved in shaping the overlapping feeding patterns, while a plethora of unique salivary secretions may drive the evolution of specific feeding behaviors crucial for their survival. These results enhance our understanding of the feeding mechanisms in different insects from the perspective of saliva and contribute to future environmentally friendly pest control by utilizing predatory insects.


Assuntos
Heterópteros , Transcriptoma , Animais , Heterópteros/genética , Glândulas Salivares , Perfilação da Expressão Gênica/métodos , Saliva
5.
Mol Biol Evol ; 40(10)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37804524

RESUMO

Herbivorous insects such as whiteflies, planthoppers, and aphids secrete abundant orphan proteins to facilitate feeding. Yet, how these genes are recruited and evolve to mediate plant-insect interaction remains unknown. In this study, we report a horizontal gene transfer (HGT) event from fungi to an ancestor of Aleyrodidae insects approximately 42 to 190 million years ago. BtFTSP1 is a salivary protein that is secreted into host plants during Bemisia tabaci feeding. It targets a defensive ferredoxin 1 in Nicotiana tabacum (NtFD1) and disrupts the NtFD1-NtFD1 interaction in plant cytosol, leading to the degradation of NtFD1 in a ubiquitin-dependent manner. Silencing BtFTSP1 has negative effects on B. tabaci feeding while overexpressing BtFTSP1 in N. tabacum benefits insects and rescues the adverse effect caused by NtFD1 overexpression. The association between BtFTSP1 and NtFD1 is newly evolved after HGT, with the homologous FTSP in its fungal donor failing to interact and destabilize NtFD1. Our study illustrates the important roles of horizontally transferred genes in plant-insect interactions and suggests the potential origin of orphan salivary genes.


Assuntos
Afídeos , Hemípteros , Animais , Ferredoxinas/metabolismo , Plantas/metabolismo , Hemípteros/genética , Nicotiana/genética , Nicotiana/metabolismo , Afídeos/metabolismo , Proteínas e Peptídeos Salivares/genética
6.
J Gen Virol ; 105(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38602389

RESUMO

A negative-strand symbiotic RNA virus, tentatively named Nilaparvata lugens Bunyavirus (NLBV), was identified in the brown planthopper (BPH, Nilaparvata lugens). Phylogenetic analysis indicated that NLBV is a member of the genus Mobuvirus (family Phenuiviridae, order Bunyavirales). Analysis of virus-derived small interfering RNA suggested that antiviral immunity of BPH was successfully activated by NLBV infection. Tissue-specific investigation showed that NLBV was mainly accumulated in the fat-body of BPH adults. Moreover, NLBV was detected in eggs of viruliferous female BPHs, suggesting the possibility of vertical transmission of NLBV in BPH. Additionally, no significant differences were observed for the biological properties between NLBV-infected and NLBV-free BPHs. Finally, analysis of geographic distribution indicated that NLBV may be prevalent in Southeast Asia. This study provided a comprehensive characterization on the molecular and biological properties of a symbiotic virus in BPH, which will contribute to our understanding of the increasingly discovered RNA viruses in insects.


Assuntos
Hemípteros , Orthobunyavirus , Vírus de RNA , Animais , Feminino , Filogenia , Insetos , Vírus de RNA/genética
7.
Arch Virol ; 169(8): 160, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981875

RESUMO

A novel monopartite dsRNA virus, tentatively named "sponge gourd amalgavirus 1" (SGAV1), was discovered by high-throughput sequencing in sponge gourd (Luffa cylindrica) displaying mosaic symptoms in Jiashan County, Zhejiang Province, China. The genome of SGAV1 is 3,447 nucleotides in length and contains partially overlapping open reading frames (ORFs) encoding a putative replication factory matrix-like protein and a fusion protein, respectively. The fusion protein of SGAV1 shares 57.07% identity with the homologous protein of salvia miltiorrhiza amalgavirus 1 (accession no. DAZ91057.1). Phylogenetic analysis based on the RNA-dependent RNA polymerase (RdRp) protein suggests that SGAV1 belongs to the genus Amalgavirus of the family Amalgaviridae. Moreover, analysis of SGAV1-derived small interfering RNAs indicated that SGAV1 was actively replicating in the host plant. Semi-quantitative RT-PCR showed higher levels of SGAV1 expression in leaves than in flowers and fruits. This is the first report of a novel amalgavirus found in sponge gourd in China.


Assuntos
Genoma Viral , Luffa , Fases de Leitura Aberta , Filogenia , Genoma Viral/genética , Luffa/virologia , Animais , China , Vírus de RNA de Cadeia Dupla/genética , Vírus de RNA de Cadeia Dupla/classificação , Vírus de RNA de Cadeia Dupla/isolamento & purificação , Sequenciamento Completo do Genoma , Proteínas Virais/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética
8.
Arch Virol ; 169(1): 19, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180588

RESUMO

The complete genomic sequence of a novel robigovirus, provisionally named "Mentha arvensis robigovirus 1" (MARV1), was determined by combining next-generation sequencing (NGS), reverse transcription polymerase chain reaction (RT-PCR), and rapid amplification of cDNA ends (RACE) PCR. The complete genomic sequence of this new virus is 7617 nucleotides in length, excluding the 3' poly(A) tail. The MARV1 genome encodes a putative replicase, "triple gene block" proteins, and a coat protein. Phylogenetic analysis demonstrated that MARV1 is a member of the genus Robigovirus, with closest relationships to African oil palm ringspot virus (AOPRV). Furthermore, MARV1-derived small interfering RNAs (siRNAs) showed typical patterns of plant-virus-derived siRNAs produced by the host antiviral RNA interference pathway. This is the first report of a plant virus of the genus Robigovirus in M. arvensis.


Assuntos
Flexiviridae , Mentha , Filogenia , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , RNA Mensageiro , RNA Interferente Pequeno/genética
9.
Arch Virol ; 169(7): 141, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850364

RESUMO

The brown planthopper (BPH), Nilaparvata lugens, is a significant agricultural pest capable of long-distance migration and transmission of viruses that cause severe disease in rice. In this study, we identified a novel segmented RNA virus in a BPH, and this virus exhibited a close relationship to members of a recently discovered virus lineage known as "quenyaviruses" within the viral kingdom Orthornavirae. This newly identified virus was named "Nilaparvata lugens quenyavirus 1" (NLQV1). NLQV1 consists of five positive-sense, single-stranded RNAs, with each segment containing a single open reading frame (ORF). The genomic characteristics and phylogenetic analysis support the classification of NLQV1 as a novel quenyavirus. Notably, all of the genome segments of NLRV contained the 5'-terminal sequence AUCUG. The characteristic virus-derived small interfering RNA (vsiRNA) profile of NLQV1 suggests that the antiviral RNAi pathway of the host BPH was activated in response to virus infection. These findings represent the first documented report of quenyaviruses in planthoppers, contributing to our understanding of quenyaviruses and expanding our knowledge of insect-specific viruses in planthoppers.


Assuntos
Genoma Viral , Hemípteros , Fases de Leitura Aberta , Filogenia , Vírus de RNA , RNA Viral , Animais , Hemípteros/virologia , Genoma Viral/genética , RNA Viral/genética , Vírus de RNA/genética , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Doenças das Plantas/virologia , Oryza/virologia , Sequenciamento Completo do Genoma , RNA Interferente Pequeno/genética
10.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33495363

RESUMO

As all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) are widely accepted in treating acute promyelocytic leukemia (APL), deescalating toxicity becomes a research hotspot. Here, we evaluated whether chemotherapy could be replaced or reduced by ATO in APL patients at different risks. After achieving complete remission with ATRA-ATO-based induction therapy, patients were randomized (1:1) into ATO and non-ATO groups for consolidation: ATRA-ATO versus ATRA-anthracycline for low-/intermediate-risk patients, or ATRA-ATO-anthracycline versus ATRA-anthracycline-cytarabine for high-risk patients. The primary end point was to assess disease-free survival (DFS) at 3 y by a noninferiority margin of -5%; 855 patients were enrolled with a median follow-up of 54.9 mo, and 658 of 755 patients could be evaluated at 3 y. In the ATO group, 96.1% (319/332) achieved 3-y DFS, compared to 92.6% (302/326) in the non-ATO group. The difference was 3.45% (95% CI -0.07 to 6.97), confirming noninferiority (P < 0.001). Using the Kaplan-Meier method, the estimated 7-y DFS was 95.7% (95% CI 93.6 to 97.9) in ATO and 92.6% (95% CI 89.8 to 95.4) in non-ATO groups (P = 0.066). Concerning secondary end points, the 7-y cumulative incidence of relapse (CIR) was significantly lower in ATO (2.2% [95% CI 1.1 to 4.2]) than in non-ATO group (6.1% [95% CI 3.9 to 9.5], P = 0.011). In addition, grade 3 to 4 hematological toxicities were significantly reduced in the ATO group during consolidation. Hence, ATRA-ATO in both chemotherapy-replacing and -reducing settings in consolidation is not inferior to ATRA-chemotherapy (https://www.clinicaltrials.gov/, NCT01987297).


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Trióxido de Arsênio/administração & dosagem , Leucemia Promielocítica Aguda/tratamento farmacológico , Tretinoína/administração & dosagem , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Trióxido de Arsênio/efeitos adversos , Quimioterapia de Consolidação/efeitos adversos , Citarabina/administração & dosagem , Citarabina/efeitos adversos , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Indução de Remissão , Resultado do Tratamento , Tretinoína/efeitos adversos
11.
BMC Genomics ; 24(1): 353, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365539

RESUMO

BACKGROUND: As one of the components of visual photopigments in photoreceptor cells, opsin exhibits different spectral peaks and plays crucial roles in visual function. Besides, it is discovered to evolve other functions despite color vision. However, research on its unconventional function is limited nowadays. With the increase in genome database numbers, various numbers and types of opsins have been identified in insects due to gene duplications or losses. The Nilaparvata lugens (Hemiptera) is a rice pest known for its long-distance migration capability. In this study, opsins were identified in N. lugens and characterized by genome and transcriptome analyses. Meanwhile, RNA interference (RNAi) was carried out to investigate the functions of opsins, and then the Illumina Novaseq 6000 platform-based transcriptome sequencing was performed to reveal gene expression patterns. RESULTS: Four opsins belonging to G protein-coupled receptors were identified in the N. lugens genome, including one long-sensitive opsin (Nllw) together with two ultraviolet-sensitive opsins (NlUV1/2) and an additional new opsin with hypothesized UV peak sensitivity (NlUV3-like). A tandem array of NlUV1/2 on the chromosome suggested the presence of a gene duplication event, with similar exons distribution. Moreover, as revealed by spatiotemporal expression, the four opsins were highly expressed in eyes with age-different expression levels. Besides, RNAi targeting each of the four opsins did not significantly affect the survival of N. lugens in phytotron, but the silencing of Nllw resulted in the melanization of body color. Further transcriptome analysis revealed that silencing of Nllw resulted in up-regulation of a tyrosine hydroxylase gene (NlTH) and down-regulation of an arylalkylamine-N-acetyltransferases gene (NlaaNAT) in N. lugens, demonstrating that Nllw is involved in body color plastic development via the tyrosine-mediated melanism pathway. CONCLUSIONS: This study provides the first evidence in a Hemipteran insect that an opsin (Nllw) takes part in the regulation of cuticle melanization, confirming a cross-talk between the gene pathways underlying the visual system and the morphological differentiation in insects.


Assuntos
Hemípteros , Opsinas , Animais , Opsinas/genética , Genoma , Hemípteros/metabolismo , Transcriptoma , Perfilação da Expressão Gênica
12.
J Gen Virol ; 104(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37432869

RESUMO

Members of the family Lispiviridae are viruses with negative-sense RNA genomes of 6.5-15.5 kb that have mainly been found in arthropods and nematodes. The genomes of lispivirids contain several open reading frames, typically encoding a nucleoprotein (N), a glycoprotein (G), and a large protein (L) including an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Lispiviridae, which is available at ictv.global/report/lispiviridae.


Assuntos
Artrópodes , Animais , Nucleoproteínas , Fases de Leitura Aberta , RNA , RNA Polimerase Dependente de RNA
13.
Genomics ; 114(1): 9-22, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34798282

RESUMO

Genomic knowledge of the tree of life is biased to specific groups of organisms. For example, only six full genomes are currently available in the rhizaria clade. Here, we have applied metagenomic techniques enabling the assembly of the genome of Polymyxa betae (Rhizaria, Plasmodiophorida) RES F41 isolate from unpurified zoospore holobiont and comparison with the A26-41 isolate. Furthermore, the first P. betae mitochondrial genome was assembled. The two P. betae nuclear genomes were highly similar, each with just ~10.2 k predicted protein coding genes, ~3% of which were unique to each isolate. Extending genomic comparisons revealed a greater overlap with Spongospora subterranea than with Plasmodiophora brassicae, including orthologs of the mammalian cation channel sperm-associated proteins, raising some intriguing questions about zoospore physiology. This work validates our metagenomics pipeline for eukaryote genome assembly from unpurified samples and enriches plasmodiophorid genomics; providing the first full annotation of the P. betae genome.


Assuntos
Genoma Mitocondrial , Plasmodioforídeos , Genômica , Metagenômica , Plasmodioforídeos/genética
14.
BMC Genomics ; 23(1): 743, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348322

RESUMO

BACKGROUND: The bZIP gene family has important roles in various biological processes, including development and stress responses. However, little information about this gene family is available for Wheel Wingnut (Cyclocarya paliurus).  RESULTS: In this study, we identified 58 bZIP genes in the C. paliurus genome and analyzed phylogenetic relationships, chromosomal locations, gene structure, collinearity, and gene expression profiles. The 58 bZIP genes could be divided into 11 groups and were unevenly distributed among 16 C. paliurus chromosomes. An analysis of cis-regulatory elements indicated that bZIP promoters were associated with phytohormones and stress responses. The expression patterns of bZIP genes in leaves differed among developmental stages. In addition, several bZIP members were differentially expressed under drought stress. These expression patterns were verified by RT-qPCR. CONCLUSIONS: Our results provide insights into the evolutionary history of the bZIP gene family in C. paliurus and the function of these genes during leaf development and in the response to drought stress. In addition to basic genomic information, our results provide a theoretical basis for further studies aimed at improving growth and stress resistance in C. paliurus, an important medicinal plant.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Filogenia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Perfilação da Expressão Gênica
15.
Blood ; 135(17): 1472-1483, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32315388

RESUMO

Internal tandem duplication (ITD) mutations within the FMS-like receptor tyrosine kinase-3 (FLT3) can be found in up to 25% to 30% of acute myeloid leukemia (AML) patients and confer a poor prognosis. Although FLT3 tyrosine kinase inhibitors (TKIs) have shown clinical responses, they cannot eliminate primitive FLT3-ITD+ AML cells, which are potential sources of relapse. Therefore, elucidating the mechanisms underlying FLT3-ITD+ AML maintenance and drug resistance is essential to develop novel effective treatment strategies. Here, we demonstrate that FLT3 inhibition induces histone deacetylase 8 (HDAC8) upregulation through FOXO1- and FOXO3-mediated transactivation in FLT3-ITD+ AML cells. Upregulated HDAC8 deacetylates and inactivates p53, leading to leukemia maintenance and drug resistance upon TKI treatment. Genetic or pharmacological inhibition of HDAC8 reactivates p53, abrogates leukemia maintenance, and significantly enhances TKI-mediated elimination of FLT3-ITD+ AML cells. Importantly, in FLT3-ITD+ AML patient-derived xenograft models, the combination of FLT3 TKI (AC220) and an HDAC8 inhibitor (22d) significantly inhibits leukemia progression and effectively reduces primitive FLT3-ITD+ AML cells. Moreover, we extend these findings to an AML subtype harboring another tyrosine kinase-activating mutation. In conclusion, our study demonstrates that HDAC8 upregulation is an important mechanism to resist TKIs and promote leukemia maintenance and suggests that combining HDAC8 inhibition with TKI treatment could be a promising strategy to treat FLT3-ITD+ AML and other tyrosine kinase mutation-harboring leukemias.


Assuntos
Biomarcadores Tumorais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteína Forkhead Box O1/metabolismo , Histona Desacetilases/metabolismo , Leucemia Mieloide Aguda/patologia , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Proteína Forkhead Box O1/genética , Regulação Neoplásica da Expressão Gênica , Histona Desacetilases/genética , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Repressoras/genética , Sequências de Repetição em Tandem , Células Tumorais Cultivadas , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Am J Bot ; 109(8): 1230-1241, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35819013

RESUMO

PREMISE: The enemy release hypothesis predicts that release from natural enemies, including soil-borne pathogens, liberates invasive plants from a negative regulating force. Nevertheless, invasive plants may acquire novel enemies and mutualists in the introduced range, which may cause variable effects on invader growth. However, how soil microorganisms may influence competitive ability of invasive plants along invasion chronosequences has been little explored. METHODS: Using the invasive plant Solidago canadensis, we tested whether longer residence times are associated with stronger negative plant-soil feedbacks and thus weaker competitive abilities at the individual level. We grew S. canadensis individuals from 36 populations with different residence times across southeastern China in competition versus no competition and in three different types of soils: (1) conspecific rhizospheric soils; (2) soils from uninvaded patches; and (3) sterilized soil. For our competitor treatments, we constructed synthetic communities of four native species (Bidens parviflora, Solanum nigrum, Kalimeris indica, and Mosla scabra), which naturally co-occur with Solidago canadensis in the field. RESULTS: Solidago canadensis populations with longer residence times experienced stronger positive plant-soil feedbacks and had greater competitive responses (i.e., produced greater above-ground biomass and grew taller) in conspecific rhizospheric soils than in sterilized or uninvaded soils. Moreover, S. canadensis from older populations significantly suppressed above-ground biomass of the native communities in rhizospheric and uninvaded soils but not in sterilized soil. CONCLUSIONS: The present results suggest that older populations of S. canadensis experience stronger positive plant-soil feedbacks, which may enhance their competitive ability against native plant communities.


Assuntos
Solidago , Retroalimentação , Espécies Introduzidas , Plantas , Solo , Microbiologia do Solo
17.
Arch Virol ; 167(4): 1215-1219, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35257228

RESUMO

The ladybird beetle Cheilomenes sexmaculata (family Coccinellidae, order Coleoptera) is a common insect predator of agricultural pests. In this study, the full genome sequence of a novel picorna-like virus, tentatively named "Cheilomenes sexmaculata picorna-like virus 1" (CSPLV1), was identified in C. sexmaculata. The full-length sequence of CSPLV1 is 11,384 nucleotides (nt) in length (excluding the polyA tail), with one predicted open reading frame (ORF) encoding a polyprotein of 3727 amino acids, a 13-nt 5' untranslated region (UTR), and a 187-nt 3' UTR. The ORF of CSPLV1 consists of four distinct domains, including an RNA virus helicase domain (nt 3029-3319), a peptidase domain (nt 5555-6121), an RNA-dependent RNA polymerase domain (nt 7154-8101), and a picorna-like coat protein domain (nt 8606-9283). Phylogenetic analysis based on the conserved RdRP sequence showed that CSPLV1, together with Wuhan house centipede virus 3, Hypera postica associated virus 1, and Diabrotica undecimpunctata virus 1, forms an unclassified group that is closely related to members of the family Solinviviridae. To the best of our knowledge, CSPLV1 is the first picorna-like virus discovered in C. sexmaculata.


Assuntos
Besouros , Sequência de Aminoácidos , Animais , Genoma Viral , Fases de Leitura Aberta , Filogenia , RNA Viral/genética
18.
Arch Virol ; 167(1): 267-270, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34762150

RESUMO

Negeviruses are a group of insect-specific viruses that have a wide geographic distribution and broad host range. In recent years, nege-like viruses have been discovered in aphids of various genera of the family Aphididae, including Aphis, Rhopalosiphum, Sitobion, and Indomegoura. Here, we report the complete genome sequence of a nege-like virus isolated from Astegopteryx formosana aphids collected in Guangdong, China, which we have designated as "Astegopteryx formosana nege-like virus" (AFNLV). AFNLV has a genome length of 10,107 nt (excluding the polyA tail) and possesses the typical conserved domains of negeviruses. These include a viral methyltransferase, an S-adenosylmethionine-dependent methyltransferase, a viral helicase, and an RNA-dependent RNA polymerase (RdRP) domain in open reading frame 1 (ORF1), a DiSB-ORF2_chro domain in ORF2, and a SP24 domain in ORF3. The genome of AFNLV shares the highest nucleotide sequence identity (74.89%) with Wuhan house centipede virus, identified in a mixture of barley aphids. As clearly revealed by RdRP-based phylogenetic analysis, AFNLV, together with other negeviruses and nege-like viruses discovered in aphids, formed a distinct "unclassified clade" closely related to members of the proposed genus "Sandewavirus" and the family Kitaviridae. In addition, small interfering RNAs (siRNAs) derived from AFNLV did not exhibit typical characteristics of virus-derived siRNAs processed by the host RNAi-based antiviral pathway. However, the extremely high abundance of viral transcripts (average read coverage 73,403X) strongly suggested that AFNLV might actively replicate in the aphid host. AFNLV described in this study is the first nege-like virus discovered in aphids of the genus Astegopteryx, which will contribute to future study of the co-evolution of nege/nege-like viruses and their host aphids.


Assuntos
Afídeos , Genoma Viral , Vírus de RNA , Animais , Afídeos/virologia , Fases de Leitura Aberta , Filogenia , Vírus de RNA/genética , RNA Viral/genética , Análise de Sequência de DNA
19.
Arch Virol ; 167(4): 1205-1209, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35246733

RESUMO

Arlivirus is currently the only genus in the newly established viral family Lispiviridae. In this study, the complete genome sequence of a novel arlivirus, tentatively named "Nbu stink bug virus 1" (NbuSBV-1), was identified in an individual yellow spotted stink bug, Erthesina fullo (family Pentatomidae, order Hemiptera), which is a widely distributed phytophagous pest in Asia. NbuSBV-1 has a single negative-stranded RNA genome of 13,605 nucleotides in length, and it was predicted to contain six open reading frames (ORFs). Conserved domains of NbuSBV-1 were predicted in ORF1 (a nucleoprotein), ORF4 (a glycoprotein domain), ORF5 (a zinc-finger domain), and ORF6 (an RNA-directed RNA polymerase [RdRP] domain, an mRNA cap domain, and a methyltransferase domain). NbuSBV-1 shares 50.54% amino acid sequence identity in the RdRP region with its closest homolog, Lishì spider virus 2. In RdRP-based phylogenetic analysis, NbuSBV-1 was clearly clustered in a clade with other arliviruses. Furthermore, NbuSBV-1-derived small interfering RNAs (siRNAs) showed typical patterns of virus-derived siRNAs produced by the host antiviral RNA interference pathway. As far as we know, NbuSBV-1 is the first arlivirus identified in an insect of the family Pentatomidae.


Assuntos
Heterópteros , Vírus de RNA , Animais , Genoma Viral , Fases de Leitura Aberta , Filogenia , Vírus de RNA/genética , RNA Viral/genética
20.
Arch Virol ; 167(10): 2079-2083, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35751691

RESUMO

The spotted lanternfly (Lycorma delicatula) is an invasive pest that causes serious economic losses in fruit and wood production. Here, we identified a novel iflavirus named "Lycorma delicatula iflavirus 1" (LDIV1), in a spotted lanternfly. The full genome sequence of LDIV1 is 10,222 nt in length and encodes a polyprotein containing a picornavirus capsid-protein-domain-like domain, a cricket paralysis virus capsid superfamily domain, an RNA helicase domain, a peptidase C3 superfamily domain, and an RNA-dependent RNA polymerase (RdRp) domain. LDIV1 replicates in the host insect and activates small interfering RNA (siRNA)-based host antiviral immunity. Phylogenetic analysis demonstrated that LDIV1 is most closely related to an unspecified member of the order Picornavirales, with 61.7% sequence identity in the RdRp region and 57.6% sequence identity in the coat protein region, and thus meets the demarcation criteria for new species in the genus Iflavirus. To the best of our knowledge, LDIV1 is the first virus discovered in L. delicatula.


Assuntos
Hemípteros , Vírus de RNA , Animais , Filogenia , RNA Polimerase Dependente de RNA , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA