Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 39(7)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348862

RESUMO

MOTIVATION: Wastewater treatment plants (WWTPs) harbor a dense and diverse microbial community. They constantly receive antimicrobial residues and resistant strains, and therefore provide conditions for horizontal gene transfer (HGT) of antimicrobial resistance (AMR) determinants. This facilitates the transmission of clinically important genes between, e.g. enteric and environmental bacteria, and vice versa. Despite the clinical importance, tools for predicting HGT remain underdeveloped. RESULTS: In this study, we examined to which extent water cycle microbial community composition, as inferred by partial 16S rRNA gene sequences, can predict plasmid permissiveness, i.e. the ability of cells to receive a plasmid through conjugation, based on data from standardized filter mating assays using fluorescent bio-reporter plasmids. We leveraged a range of machine learning models for predicting the permissiveness for each taxon in the community, representing the range of hosts a plasmid is able to transfer to, for three broad host-range resistance IncP plasmids (pKJK5, pB10, and RP4). Our results indicate that the predicted permissiveness from the best performing model (random forest) showed a moderate-to-strong average correlation of 0.49 for pB10 [95% confidence interval (CI): 0.44-0.55], 0.43 for pKJK5 (0.95% CI: 0.41-0.49), and 0.53 for RP4 (0.95% CI: 0.48-0.57) with the experimental permissiveness in the unseen test dataset. Predictive phylogenetic signals occurred despite the broad host-range nature of these plasmids. Our results provide a framework that contributes to the assessment of the risk of AMR pollution in wastewater systems. AVAILABILITY AND IMPLEMENTATION: The predictive tool is available as an application at https://github.com/DaneshMoradigaravand/PlasmidPerm.


Assuntos
Microbiota , Águas Residuárias , RNA Ribossômico 16S/genética , Filogenia , Permissividade , Plasmídeos/genética , Transferência Genética Horizontal
2.
Environ Sci Technol ; 55(9): 5939-5949, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33886308

RESUMO

Urban wastewater systems (UWSs) are a main receptacle of excreted antibiotic resistance genes (ARGs) and their host microorganisms. However, we lack integrated and quantitative observations of the occurrence of ARGs in the UWS to characterize the sources and identify processes that contribute to their fate. We sampled the UWSs from three medium-size cities in Denmark, Spain, and the United Kingdom and quantified 70 clinically important extended-spectrum ß-lactamase and carbapenemase genes along with the mobile genetic elements and microbial communities. Results from all three countries showed that sewage-especially from hospitals-carried substantial loads of ARGs (106-107 copies per person equivalent), but these loads progressively declined along sewers and through sewage treatment plants, resulting in minimal emissions (101-104 copies per person equivalent). Removal was primarily during sewage conveyance (65 ± 36%) rather than within sewage treatment (34 ± 23%). The extended-spectrum ß-lactamase and carbapenemase genes were clustered in groups based on their persistence in the UWS compartments. The less-persistent groups were associated to putative host taxa (especially Enterobacteriaceae and Moraxellaceae), while the more persistent groups appeared horizontally transferred and correlated significantly with total cell numbers and mobile genetic elements. This documentation of a substantial ARG reduction during sewage conveyance provides opportunities for antibiotic resistance management and a caution for sewage-based antibiotic resistance surveillance.


Assuntos
Esgotos , beta-Lactamases , Antibacterianos , Proteínas de Bactérias , Genes Bacterianos , Espanha , Reino Unido , Águas Residuárias , beta-Lactamases/genética
3.
Bioinformatics ; 34(13): 2263-2270, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29408954

RESUMO

Motivation: Much global attention has been paid to antibiotic resistance in monitoring its emergence, accumulation and dissemination. For rapid characterization and quantification of antibiotic resistance genes (ARGs) in metagenomic datasets, an online analysis pipeline, ARGs-OAP has been developed consisting of a database termed Structured Antibiotic Resistance Genes (the SARG) with a hierarchical structure (ARGs type-subtype-reference sequence). Results: The new release of the database, termed SARG version 2.0, contains sequences not only from CARD and ARDB databases, but also carefully selected and curated sequences from the latest protein collection of the NCBI-NR database, to keep up to date with the increasing number of ARG deposited sequences. SARG v2.0 has tripled the sequences of the first version and demonstrated improved coverage of ARGs detection in metagenomes from various environmental samples. In addition to annotation of high-throughput raw reads using a similarity search strategy, ARGs-OAP v2.0 now provides model-based identification of assembled sequences using SARGfam, a high-quality profile Hidden Markov Model (HMM), containing profiles of ARG subtypes. Additionally, ARGs-OAP v2.0 improves cell number quantification by using the average coverage of essential single copy marker genes, as an option in addition to the previous method based on the 16S rRNA gene. Availability and implementation: ARGs-OAP can be accessed through http://smile.hku.hk/SARGs. The database could be downloaded from the same site. Source codes for this study can be downloaded from https://github.com/xiaole99/ARGs-OAP-v2.0. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Bases de Dados Factuais , Resistência Microbiana a Medicamentos/genética , Metagenoma , Software , Archaea/genética , Archaea/fisiologia , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Genoma Arqueal , Genoma Bacteriano , Metagenômica/métodos , Análise de Sequência de DNA/métodos
4.
Environ Sci Technol ; 53(15): 8533-8542, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31269402

RESUMO

Global paddy soil is the primary source of methane, a potent greenhouse gas. It is therefore highly important to understand the carbon cycling in paddy soil. Microbial reduction of iron, which is widely found in paddy soil, is likely coupled with the oxidation of dissolved organic matter (DOM) and suppresses methanogenesis. However, little is known about the biotransformation of small molecular DOM accumulated under flooded conditions and the effect of iron reduction on the biotransformation pathway. Here, we carried out anaerobic incubation experiments using field-collected samples amended with ferrihydrite and different short-chain fatty acids. Our results showed that less than 20% of short-chain fatty acids were mineralized and released to the atmosphere. Using Fourier transform ion cyclotron resonance mass spectrometry, we further found that a large number of recalcitrant molecules were produced during microbial consumption of these short-chain fatty acids. Moreover, the biotransformation efficiency of short-chain fatty acids decreased with the increasing length of carbon chains. Ferrihydrite addition promoted microbial assimilation of short-chain fatty acids as well as enhanced the activation and biotransformation of indigenous stable carbon in the soil replenished with formate. This study demonstrates the significance of ferrihydrite in the biotransformation of labile DOM and promotes a more comprehensive understanding of the coupling of iron reduction and carbon cycling in paddy soils.


Assuntos
Oryza , Solo , Carbono , Ciclo do Carbono , Ferro , Metano , Microbiologia do Solo
5.
Environ Sci Technol ; 51(7): 4069-4080, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28272884

RESUMO

Digested residues from biogas plants are often used as biofertilizers for agricultural crops cultivation. The antibiotic resistance genes (ARGs) in digested residues pose a high risk to public health due to their potential spread to the disease-causing microorganisms and thus reduce the susceptibility of disease-causing microorganisms to antibiotics in medical treatment. A high-throughput sequencing (HTS)-based metagenomic approach was used in the present study to investigate the variations of ARGs in full-scale biogas reactors and the correlations of ARGs with microbial communities and metal resistance genes (MRGs). The total abundance of ARGs in all the samples varied from 7 × 10-3 to 1.08 × 10-1 copy of ARG/copy of 16S-rRNA gene, and the samples obtained from thermophilic biogas reactors had a lower total abundance of ARGs, indicating the superiority of thermophilic anaerobic digestion for ARGs removal. ARGs in all the samples were composed of 175 ARG subtypes; however, only 7 ARG subtypes were shared by all the samples. Principal component analysis and canonical correspondence analysis clustered the samples into three groups (samples from manure-based mesophilic reactors, manure-based thermophilic reactors, and sludge-based mesophilic reactors), and substrate, temperature, and hydraulic retention time (HRT) as well as volatile fatty acids (VFAs) were identified as crucial environmental variables affecting the ARGs compositions. Procrustes analysis revealed microbial community composition was the determinant of ARGs composition in biogas reactors, and there was also a significant correlation between ARGs composition and MRGs composition. Network analysis further revealed the co-occurrence of ARGs with specific microorganisms and MRGs.


Assuntos
Antibacterianos , Biocombustíveis , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Metagenoma , Metais/farmacologia
6.
Appl Microbiol Biotechnol ; 101(15): 6253-6260, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28584911

RESUMO

Emergence of new antibiotic resistance bacteria poses a serious threat to human health, which is largely attributed to the evolution and spread of antibiotic resistance genes (ARGs). In this work, a metagenomics-guided strategy consisting of metagenomic analysis and function validation was proposed for rapidly identifying novel ARGs from hot spots of ARG dissemination, such as wastewater treatment plants (WWTPs) and animal feces. We used an antibiotic resistance gene database to annotate 76 putative ß-lactam resistance genes from the metagenomes of sludge and chicken feces. Among these 76 candidate genes, 25 target genes that shared 40~70% amino acid identity to known ß-lactamases were cloned by PCR from the metagenomes. Their resistances to four ß-lactam antibiotics were further demonstrated. Furthermore, the validated ARGs were used as the reference sequences to identify novel ARGs in eight environmental samples, suggesting the necessity of re-examining the profiles of ARGs in environmental samples using the validated novel ARG sequences. This metagenomics-guided pipeline does not rely on the activity of ARGs during the initial screening process and may specifically select novel ARG sequences for function validation, which make it suitable for the high-throughput screening of novel ARGs from environmental metagenomes.


Assuntos
Bioprospecção , Farmacorresistência Bacteriana/genética , Fezes/microbiologia , Metagenoma , Metagenômica/métodos , Resistência beta-Lactâmica/genética , Animais , Antibacterianos/farmacologia , Galinhas/microbiologia , Bases de Dados Genéticas , Genes Bacterianos , Humanos , Esgotos/microbiologia , Águas Residuárias/microbiologia , beta-Lactamases/genética , beta-Lactamas/farmacologia
7.
Environ Sci Technol ; 50(1): 420-7, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26650334

RESUMO

The risk associated with antibiotic resistance disseminating from animal and human feces is an urgent public issue. In the present study, we sought to establish a pipeline for annotating antibiotic resistance genes (ARGs) based on metagenomic assembly to investigate ARGs and their co-occurrence with associated genetic elements. Genetic elements found on the assembled genomic fragments include mobile genetic elements (MGEs) and metal resistance genes (MRGs). We then explored the hosts of these resistance genes and the shared resistome of pig, chicken and human fecal samples. High levels of tetracycline, multidrug, erythromycin, and aminoglycoside resistance genes were discovered in these fecal samples. In particular, significantly high level of ARGs (7762 ×/Gb) was detected in adult chicken feces, indicating higher ARG contamination level than other fecal samples. Many ARGs arrangements (e.g., macA-macB and tetA-tetR) were discovered shared by chicken, pig and human feces. In addition, MGEs such as the aadA5-dfrA17-carrying class 1 integron were identified on an assembled scaffold of chicken feces, and are carried by human pathogens. Differential coverage binning analysis revealed significant ARG enrichment in adult chicken feces. A draft genome, annotated as multidrug resistant Escherichia coli, was retrieved from chicken feces metagenomes and was determined to carry diverse ARGs (multidrug, acriflavine, and macrolide). The present study demonstrates the determination of ARG hosts and the shared resistome from metagenomic data sets and successfully establishes the relationship between ARGs, hosts, and environments. This ARG annotation pipeline based on metagenomic assembly will help to bridge the knowledge gaps regarding ARG-associated genes and ARG hosts with metagenomic data sets. Moreover, this pipeline will facilitate the evaluation of environmental risks in the genetic context of ARGs.


Assuntos
Farmacorresistência Bacteriana/genética , Fezes/microbiologia , Genes Bacterianos/genética , Metagenoma/genética , Metagenômica/métodos , Anotação de Sequência Molecular/métodos , Animais , Galinhas , Humanos , Sus scrofa , Suínos
8.
Appl Microbiol Biotechnol ; 98(24): 10255-66, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25081552

RESUMO

In this study, we utilized the Illumina high-throughput metagenomic approach to investigate diversity and abundance of both microbial community and copper resistance genes (CuRGs) in activated sludge (AS) which was enriched under copper selective stress up to 800 mg/L. The raw datasets (~3.5 Gb for each sample, i.e., the copper-enriched AS and the control AS) were merged and normalized for the BLAST analyses against the SILVA SSU rRNA gene database and self-constructed copper resistance protein database (CuRD). Also, the raw metagenomic sequences were assembled into contigs and analyzed based on Open Reading Frames (ORFs) to identify potentially novel copper resistance genes. Among the different resistance systems for copper detoxification under the high copper stress condition, the Cus system was the most enriched system. The results also indicated that genes encoding multi-copper oxidase played a more important role than those encoding efflux proteins. More significantly, several potentially novel copper resistance ORFs were identified by Pfam search and phylogenic analysis. This study demonstrated a new understanding of microbial-mediated copper resistance under high copper stress using high-throughput shotgun sequencing technique.


Assuntos
Archaea/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Cobre/toxicidade , Resistência Microbiana a Medicamentos , Eucariotos/efeitos dos fármacos , Esgotos/microbiologia , Archaea/genética , Bactérias/genética , Biota/efeitos dos fármacos , Análise por Conglomerados , DNA Ribossômico/química , DNA Ribossômico/genética , Eucariotos/genética , Metagenômica , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Esgotos/química
9.
Microbiome ; 12(1): 107, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877573

RESUMO

BACKGROUND: Aquaculture is an important food source worldwide. The extensive use of antibiotics in intensive large-scale farms has resulted in resistance development. Non-intensive aquaculture is another aquatic feeding model that is conducive to ecological protection and closely related to the natural environment. However, the transmission of resistomes in non-intensive aquaculture has not been well characterized. Moreover, the influence of aquaculture resistomes on human health needs to be further understood. Here, metagenomic approach was employed to identify the mobility of aquaculture resistomes and estimate the potential risks to human health. RESULTS: The results demonstrated that antibiotic resistance genes (ARGs) were widely present in non-intensive aquaculture systems and the multidrug type was most abundant accounting for 34%. ARGs of non-intensive aquaculture environments were mainly shaped by microbial communities accounting for 51%. Seventy-seven genera and 36 mobile genetic elements (MGEs) were significantly associated with 23 ARG types (p < 0.05) according to network analysis. Six ARGs were defined as core ARGs (top 3% most abundant with occurrence frequency > 80%) which occupied 40% of ARG abundance in fish gut samples. Seventy-one ARG-carrying contigs were identified and 75% of them carried MGEs simultaneously. The qacEdelta1 and sul1 formed a stable combination and were detected simultaneously in aquaculture environments and humans. Additionally, 475 high-quality metagenomic-assembled genomes (MAGs) were recovered and 81 MAGs carried ARGs. The multidrug and bacitracin resistance genes were the most abundant ARG types carried by MAGs. Strikingly, Fusobacterium_A (opportunistic human pathogen) carrying ARGs and MGEs were identified in both the aquaculture system and human guts, which indicated the potential risks of ARG transfer. CONCLUSIONS: The mobility and pathogenicity of aquaculture resistomes were explored by a metagenomic approach. Given the observed co-occurrence of resistomes between the aquaculture environment and human, more stringent regulation of resistomes in non-intensive aquaculture systems may be required. Video Abstract.


Assuntos
Antibacterianos , Aquicultura , Metagenômica , Humanos , Metagenômica/métodos , Antibacterianos/farmacologia , Animais , Bactérias/genética , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Metagenoma , Peixes/microbiologia , Farmacorresistência Bacteriana/genética , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos/genética , Sequências Repetitivas Dispersas/genética
10.
mLife ; 2(3): 224-228, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38817813

RESUMO

Antibiotic resistance has been recognized as a major challenge worldwide for humans. "One Health" has been recognized as a key concept for containment of antibiotic resistance. Under the framework, the role of the environment in the development of antibiotic resistance genes (ARGs) has become increasingly obvious. Despite numerous efforts, response to antibiotic resistance is considered to be inadequate, which is probably due to the lack of a clear roadmap. Here, we propose a "One Health" roadmap to combat antibiotic resistance in the environment through (1) understanding environmental resistome. The environmental gene pool has long been recognized as the single largest reservoir of both known and novel ARGs. (2) Standardizing ARG quantification. Systematic joint efforts based on standardized quantification are urgently needed to understand the true tempospatial profiles of the environmental resistome. (3) Identifying mechanisms of resistome development. Horizontal gene transfer and co-selection have been recognized as the two main mechanisms contributing to the environmental resistome. (4) Establishing a risk-assessment framework. The first critical step for large-scale cost-effective targeted ARG management in the environment is the risk assessment to identify the priority ARGs for control. (5) Formulating regulatory standards. By correlating the environmental ARG profile with public health, we may identify the indicator ARGs that can be integrated into current environmental quality standards. (6) Developing control strategies. Systematic analysis of available control technologies is required to identify the most feasible ones to curtail the spread of ARGs in the environment. The proposed roadmap under the "One Health" framework provides a guide to tackle antibiotic resistance in the environment.

11.
Sci Total Environ ; 887: 163870, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37149187

RESUMO

Although clinical settings play a major role in the current global dissemination of antibiotic resistance, once antibiotic resistance bacteria and genes are released into the environment, their fate will be subject to complex ecological processes. One of the processes prevalent in microbial communities - horizontal gene transfer - can largely facilitate the dissemination of antibiotic resistance genes (ARGs) across phylogenetic and ecological boundaries. Especially, plasmid transfer has aroused increasing concern as it has been proved a significant role in promoting ARG dissemination. As a multi-step process, plasmid transfer can be influenced by various factors, among which those stresses caused by environmental pollutants are important elements affecting the plasmid mediated ARG transfer in the environment. In fact, diverse traditional and emerging pollutants are continuously entering the environment nowadays, as evidenced by the global occurrence of pollutants like metals and pharmaceuticals in aquatic and terrestrial systems. It is therefore imperative to understand to what extent and in which way the plasmid mediated ARG dissemination can be influenced by these stresses. Over the past decades, numerous research endeavours have been made to understand the plasmid mediated ARG transfer under various environmental relevant pressures. In this review, progress and challenges of studies on environmental stress regulating plasmid mediated ARG dissemination will be discussed, with specific focus on emerging pollutants like antibiotics and non-antibiotic pharmaceuticals, metals and their nanoparticles, disinfectants and disinfection by-products, as well as the emerging particulate matter like microplastics. Despite the previous efforts, we are still lacking insights into the in situ plasmid transfer under environmental stresses, which can be addressed by future studies considering environmental relevant pollution status and multi-species microbial communities. We believe that future development of standardized high-throughput screening platforms will assist in rapidly identifying which pollutants enhance plasmid transfer and also which ones may block such gene transfer processes.


Assuntos
Poluentes Ambientais , Plásticos , Filogenia , Resistência Microbiana a Medicamentos/genética , Antibacterianos/farmacologia , Genes Bacterianos , Plasmídeos , Transferência Genética Horizontal , Preparações Farmacêuticas
12.
Environ Microbiome ; 18(1): 39, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37122013

RESUMO

BACKGROUND: Polycyclic aromatic hydrocarbon (PAH) contamination has been a worldwide environmental issue because of its impact on ecosystems and human health. Biodegradation plays an important role in PAH removal in natural environments. To date, many PAH-degrading strains and degradation genes have been reported. However, a comprehensive PAH-degrading gene database is still lacking, hindering a deep understanding of PAH degraders in the era of big data. Furthermore, the relationships between the PAH-catabolic genotype and phenotype remain unclear. RESULTS: Here, we established a bacterial PAH-degrading gene database and explored PAH biodegradation capability via a genome-function relationship approach. The investigation of functional genes in the experimentally verified PAH degraders indicated that genes encoding hydratase-aldolase could serve as a biomarker for preliminarily identifying potential degraders. Additionally, a genome-centric interpretation of PAH-degrading genes was performed in the public genome database, demonstrating that they were ubiquitous in Proteobacteria and Actinobacteria. Meanwhile, the global phylogenetic distribution was generally consistent with the culture-based evidence. Notably, a few strains affiliated with the genera without any previously known PAH degraders (Hyphomonas, Hoeflea, Henriciella, Saccharomonospora, Sciscionella, Tepidiphilus, and Xenophilus) also bore a complete PAH-catabolic gene cluster, implying their potential of PAH biodegradation. Moreover, a random forest analysis was applied to predict the PAH-degrading trait in the complete genome database, revealing 28 newly predicted PAH degraders, of which nine strains encoded a complete PAH-catabolic pathway. CONCLUSIONS: Our results established a comprehensive PAH-degrading gene database and a genome-function relationship approach, which revealed several potential novel PAH-degrader lineages. Importantly, this genome-centric and function-oriented approach can overcome the bottleneck of conventional cultivation-based biodegradation research and substantially expand our current knowledge on the potential degraders of environmental pollutants.

13.
mSystems ; 8(6): e0017823, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38032189

RESUMO

IMPORTANCE: Different from other extensively studied mobile genetic elements (MGEs) whose discoveries were initiated decades ago (1950s-1980s), integrative and conjugative elements (ICEs), a diverse array of more recently identified elements that were formally termed in 2002, have aroused increasing concern for their crucial contribution to the dissemination of antibiotic resistance genes (ARGs). However, the comprehensive understanding on ICEs' ARG profile across the bacterial tree of life is still blurred. Through a genomic study by comparison with two key MGEs, we, for the first time, systematically investigated the ARG profile as well as the host range of ICEs and also explored the MGE-specific potential to facilitate ARG propagation across phylogenetic barriers. These findings could serve as a theoretical foundation for risk assessment of ARGs mediated by distinct MGEs and further to optimize therapeutic strategies aimed at restraining antibiotic resistance crises.


Assuntos
Antibacterianos , Conjugação Genética , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Transferência Genética Horizontal/genética , Genômica , Filogenia
14.
Water Res ; 235: 119875, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36996751

RESUMO

The widely distributed antibiotic resistance genes (ARGs) were unevenly proliferated in various habitats. Great endeavors are needed to resolve the resistome features that can differentiate or connect different habitats. This study retrieved a broad spectrum of resistome profiles from 1723 metagenomes categorized into 13 habitats, encompassing industrial, urban, agricultural, and natural environments, and spanning most continents and oceans. The resistome features (ARG types, subtypes, indicator ARGs, and emerging mobilizable ARGs: mcr and tet(X)) in these habitats were benchmarked via a standardized workflow. We found that wastewater and wastewater treatment works were characterized to be reservoirs of more diverse genotypes of ARGs than any other habitats including human and livestock fecal samples, while fecal samples were with higher ARG abundance. Bacterial taxonomy composition was significantly correlated with resistome composition across most habitats. Moreover, the source-sink connectivities were disentangled by developing the resistome-based microbial attribution prediction model. Environmental surveys with standardized bioinformatic workflow proposed in this study will help comprehensively understand the transfer of ARGs in the environment, thus prioritizing the critical environments with high risks for intervention to tackle the problem of ARGs.


Assuntos
Genes Bacterianos , Metagenoma , Humanos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Ecossistema
15.
Plant J ; 68(1): 186-200, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21635585

RESUMO

Here, we describe experiments on Tn5 transposase-assisted transformation of indica rice. Transposomes were formed in vitro as a result of hyperactive Tn5 transposase complexing with a transposon that contained a 19-bp tetracycline operator (tetO) sequence. To form modified projectiles for transformation, the Tn10-derived prokaryotic tetracycline repressor (TetR) proteins, which can bind transposomes via the high affinity of TetR for tetO, were immobilized onto the surface of bare gold microscopic particles. These projectiles were introduced into cells of the indica rice cultivar Zhuxian B by particle bombardment. Once projectiles were inside the cell, tetracycline induced an allosteric conformational change in TetR that resulted in the dissociation of TetR from tetO, and thus generated free transposomes. Molecular evidence of transposition was obtained by the cloning of insertion sites from many transgenic plants. We also demonstrated that the introduced foreign DNA was inherited stably over several generations. This technique is a promising transformation method for other plant species as it is species independent.


Assuntos
Elementos de DNA Transponíveis/genética , Engenharia Genética/métodos , Oryza/genética , Proteínas Repressoras/química , Transposases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Clonagem Molecular , DNA de Plantas/genética , Ouro/química , Modelos Genéticos , Mutagênese Insercional , Hibridização de Ácido Nucleico , Oryza/fisiologia , Plantas Geneticamente Modificadas/genética , Plasmídeos/genética , Proteínas Repressoras/genética , Proteínas Repressoras/isolamento & purificação , Tetraciclina/metabolismo , Transformação Genética , Transposases/genética , Transposases/isolamento & purificação
16.
Front Bioinform ; 2: 813771, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304268

RESUMO

In the era of high-throughput sequencing, genetic information that is inherently whispering hints of the microbes' functional niches is becoming easily accessible; however, properly identifying and characterizing these genetic hints to infer the microbes' functional niches remains a challenge. Regarding genome-centric interpretation on the specific functional niche of cellulose hydrolysis for anaerobes, often encountered in practice is a lack of confidence in predicting the anaerobes' real cellulolytic competency based solely on abundances of the varying carbohydrate-active enzyme modules annotated or on their taxonomy affiliation. Recognition of the synergy machineries that include but not limited to the cellulosome gene clusters is equally important as the annotation of individual carbohydrate-active modules or genes. In the interpretation of complete genomes of 2,768 microbe strains whose phenotypes have been well documented, with the incorporation of an automatic recognition of synergy among the carbohydrate active elements annotated, an explicit genotype-phenotype correlation was evidenced to be feasible for cellulolytic anaerobes, and a bioinformatic pipeline was developed accordingly. This genome-centric pipeline would categorize putative cellulolytic anaerobes into six genotype groups based on differential cellulose-hydrolyzing capacity and varying synergy mechanisms. Suggested in this genotype-phenotype correlation analysis was a finer categorization of the cellulosome gene clusters: although cellulosome complexes, by their nature, could enable the assembly of a number of carbohydrate-active units, they do not certainly guarantee the formation of the cellulose-enzyme-microbe complex or the cellulose-hydrolyzing activity of the corresponding anaerobe strains, for example, the well-known Clostridium acetobutylicum strains. Also, recognized in this genotype-phenotype correlation analysis was the genetic foundation of a previously unrecognized machinery that may mediate the microbe-cellulose adhesion, to be specific, enzymes encoded by genes harboring both the surface layer homology and cellulose-binding CBM modules. Applicability of this pipeline on scalable annotation of large genome datasets was further tested with the annotation of 7,902 reference genomes downloaded from NCBI, from which 14 genomes of putative paradigm cellulose-hydrolyzing anaerobes were identified. We believe the pipeline developed in this study would be a good add as a bioinformatic tool for genome-centric interpretation of uncultivated anaerobes, specifically on their functional niche of cellulose hydrolysis.

17.
Water Res ; 224: 119049, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36108398

RESUMO

Anaerobic digestion (AD) relies on myriads of functions performed by complex microbial communities in customized settings, thus, a comprehensive investigation on the AD microbiome is central to the fine-tuned control. Most current AD microbiome studies are based on relative abundance, which hinders the interpretation of microbes' dynamics and inter-sample comparisons. Here, we developed an absolute quantification (AQ) approach that integrated cellular spike-ins with metagenomic sequencing to elucidate microbial community variations and population dynamics in four anaerobic digesters. Using this method, 253 microbes were defined as decaying populations with decay rates ranging from -0.05 to -5.85 d-1, wherein, a population from Flavobacteriaceae family decayed at the highest rates of -3.87 to -5.85 d-1 in four digesters. Meanwhile, 25 microbes demonstrated the growing trend in the AD processes with growth rates ranging from 0.11 to 1.77 d-1, and genome-centric analysis assigned some of the populations to the functional niches of hydrolysis, short-chain fatty acids metabolism, and methane generation. Additionally, we observed that the specific activity of methanogens was lower in the prolonged digestion stage, and redundancy analysis revealed that the feedstock composition and the digestion duration were the two key parameters in governing the AD microbial compositions.


Assuntos
Reatores Biológicos , Euryarchaeota , Anaerobiose , Euryarchaeota/metabolismo , Ácidos Graxos Voláteis , Metano/metabolismo , Esgotos
18.
Environ Toxicol Chem ; 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36582150

RESUMO

Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are important environmental contaminants. Nonetheless, what drives the evolution, spread, and transmission of antibiotic resistance dissemination is still poorly understood. The abundance of ARB and ARGs is often elevated in human-impacted areas, especially in environments receiving fecal wastes, or in the presence of complex mixtures of chemical contaminants, such as pharmaceuticals and personal care products. Self-replication, mutation, horizontal gene transfer, and adaptation to different environmental conditions contribute to the persistence and proliferation of ARB in habitats under strong anthropogenic influence. Our review discusses the interplay between chemical contaminants and ARB and their respective genes, specifically in reference to co-occurrence, potential biostimulation, and selective pressure effects, and gives an overview of mitigation by existing man-made and natural barriers. Evidence and strategies to improve the assessment of human health risks due to environmental antibiotic resistance are also discussed. Environ Toxicol Chem 2023;00:1-16. © 2022 SETAC.

19.
Plant Mol Biol ; 77(1-2): 117-27, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21643845

RESUMO

We have developed a modified particle bombardment method for plant transgenesis. An intein-tag and a 6×Cys-tag were successively fused to the N-terminus of a hyperactive Tn5 transposase. The modified transposase was immobilized on bare gold microscopic particles via covalent binding of a 6×Cys-tag sulfydryl groups to the gold surface. The tethered transposase can bind the transposon DNA in vitro to form the transposome in the absence of Mg²âº ions. After bombardment of the gold particles carrying the transposomes into the plant cells, the transposomes will be released from the carrier due to the activated self-cleavage function of intein-tag. Our data showed this procedure integrated foreign DNA into the plant genome with an increased transformation frequency as compared to the conventional particle bombardment method. A single copy insertion can also be obtained by decreasing of the assembled transposon DNA amount in relation to plant cell biomass.


Assuntos
Engenharia Genética/métodos , Ouro/química , Plantas Geneticamente Modificadas/genética , Transposases/genética , Modelos Genéticos , Orchidaceae/genética , Transformação Genética , Transposases/química , Zea mays/genética
20.
Biodegradation ; 22(5): 897-904, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21188476

RESUMO

A leuco derivatives of triphenylmethane dyes degrading bacterium, strain CM9, was isolated from an aquafarm field. Based on morphology, physiologic tests, 16S rDNA sequence, and phylogenetic characteristics, it was identified as Sphingomonas sp. This strain was capable of degrading leucomalachite green (LMG), leucocrystal violet and leucobasic fuchsin completely. The relationship between bacterium growth and LMG degradation suggested that strain CM9 could use LMG as the sole source of carbon. The most LMG degradation activity of CM9 crude extract was observed at pH 7.0 and at 30°C. Many metal ions had little inhibition effect on the degradation activity of the crude extract. CM9 also showed strong decolorization of triphenylmethane dyes to their leuco derivatives. GC/MS analysis detected two novel metabolic products, methylbenzene and 4-aminophenol, during the LMG degradation by CM9.


Assuntos
Corantes/metabolismo , Sphingomonas/metabolismo , Compostos de Tritil/metabolismo , Biodegradação Ambiental , Corantes/química , DNA Ribossômico/genética , Água Doce/microbiologia , Violeta Genciana/química , Violeta Genciana/metabolismo , Dados de Sequência Molecular , Estrutura Molecular , Filogenia , RNA Ribossômico 16S/genética , Corantes de Rosanilina/química , Corantes de Rosanilina/metabolismo , Sphingomonas/classificação , Sphingomonas/genética , Sphingomonas/isolamento & purificação , Compostos de Tritil/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA