Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Vet Res ; 54(1): 21, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918936

RESUMO

The alphaherpesvirus pseudorabies virus (PRV) is the causative agent of pseudorabies, responsible for severe economic losses to the swine industry worldwide. The interferon-inducible GTPase guanylate-binding protein 1 (GBP1) exhibits antiviral immunity. Our findings show that there is a robust upregulation in the expression of porcine GBP1 during PRV infection. GBP1 knockout promotes PRV infection, while GBP1 overexpression restricts it. Importantly, we found that GBP1 impeded the normal structure of actin filaments in a GTPase-dependent manner, preventing PRV virions from reaching the nucleus. We also discovered that viral US3 protein bound GBP1 to interfere with its GTPase activity. Finally, the interaction between US3 and GBP1 requires US3 serine/threonine kinase activity sites and the GTPase domain (aa 1 to 308) of GBP1. Taken together, this study offers fresh perspectives on how PRV manipulates the host's antiviral immune system.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Doenças dos Suínos , Suínos , Animais , Herpesvirus Suídeo 1/fisiologia , Citoesqueleto de Actina/metabolismo , Proteínas Virais/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Antivirais , Doenças dos Suínos/metabolismo
2.
Microb Ecol ; 85(1): 221-231, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35043220

RESUMO

Soil microorganisms play key roles in terrestrial biogeochemical cycles and ecosystem functions. However, few studies address how long-term nitrogen (N) addition gradients impact soil bacterial and fungal diversity and community composition simultaneously. Here, we investigated soil bacterial and fungal diversity and community composition based on a long-term (17 years) N addition gradient experiment (six levels: 0, 2, 4, 8, 16, 32 gN m-2 year-1) in temperate grassland, using the high-throughput Illumina MiSeq sequencing. Results showed that both soil bacterial and fungal alpha diversity responded nonlinearly to the N input gradient and reduced drastically when the N addition rate reached 32 g N m-2 year-1. The relative abundance of soil bacterial phyla Proteobacteria increased and Acidobacteria decreased significantly with increasing N level. In addition, the relative abundance of bacterial functional groups associated with aerobic ammonia oxidation, aerobic nitrite oxidation, nitrification, respiration of sulfate and sulfur compounds, and chitinolysis significantly decreased under the highest N addition treatment. For soil fungi, the relative abundance of Ascomycota increased linearly along the N enrichment gradient. These results suggest that changes in soil microbial community composition under elevated N do not always support the copiotrophic-oligotrophic hypothesis, and some certain functional bacteria would not simply be controlled by soil nutrients. Further analysis illustrated that reduced soil pH under N addition was the main factor driving variations in soil microbial diversity and community structure in this grassland. Our findings highlight the consistently nonlinear responses of soil bacterial and fungal diversity to increasing N input and the significant effects of soil acidification on soil microbial communities, which can be helpful for the prediction of underground ecosystem processes in light of future rising N deposition.


Assuntos
Microbiota , Solo , Solo/química , Pradaria , Microbiologia do Solo , Bactérias/genética , Fungos/genética , Concentração de Íons de Hidrogênio
3.
BMC Microbiol ; 20(1): 65, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209070

RESUMO

BACKGROUND: It has recently been reported that intermittent fasting shapes the gut microbiota to benefit health, but this effect may be influenced to the exact fasting protocols. The purpose of this study was to assess the effects of different daily fasting hours on shaping the gut microbiota in mice. Healthy C57BL/6 J male mice were subjected to 12, 16 or 20 h fasting per day for 1 month, and then fed ad libitum for an extended month. Gut microbiota was analyzed by 16S rRNA gene-based sequencing and food intake was recorded as well. RESULTS: We found that cumulative food intake was not changed in the group with 12 h daily fasting, but significantly decreased in the 16 and 20 h fasting groups. The composition of gut microbiota was altered by all these types of intermittent fasting. At genus level, 16 h fasting led to increased level of Akkermansia and decreased level of Alistipes, but these effects disappeared after the cessation of fasting. No taxonomic differences were identified in the other two groups. CONCLUSIONS: These data indicated that intermittent fasting shapes gut microbiota in healthy mice, and the length of daily fasting interval may influence the outcome of intermittent fasting.


Assuntos
Bactérias/classificação , Jejum , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Animais , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/genética , DNA Ribossômico/genética , Microbioma Gastrointestinal , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Filogenia
4.
Glob Chang Biol ; 26(2): 960-970, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31529564

RESUMO

Livestock grazing often alters aboveground and belowground communities of grasslands and their mediated carbon (C) and nitrogen (N) cycling processes at the local scale. Yet, few have examined whether grazing-induced changes in soil food webs and their ecosystem functions can be extrapolated to a regional scale. We investigated how large herbivore grazing affects soil micro-food webs (microbes and nematodes) and ecosystem functions (soil C and N mineralization), using paired grazed and ungrazed plots at 10 locations across the Mongolian Plateau. Our results showed that grazing not only affected plant variables (e.g., biomass and C and N concentrations), but also altered soil substrates (e.g., C and N contents) and soil environment (e.g., soil pH and bulk density). Grazing had strong bottom-up effects on soil micro-food webs, leading to more pronounced decreases at higher trophic levels (nematodes) than at lower trophic levels (microbes). Structural equation modeling showed that changes in plant biomass and soil environment dominated grazing effects on microbes, while nematodes were mainly influenced by changes in plant biomass and soil C and N contents; the grazing effects, however, differed greatly among functional groups in the soil micro-food webs. Grazing reduced soil C and N mineralization rates via changes in plant biomass, soil C and N contents, and soil environment across grasslands on the Mongolian Plateau. Spearman's rank correlation analysis also showed that grazing reduced the correlations between functional groups in soil micro-food webs and then weakened the correlation between soil micro-food webs and soil C and N mineralization. These results suggest that changes in soil micro-food webs resulting from livestock grazing are poor predictors of soil C and N processes at regional scale, and that the relationships between soil food webs and ecosystem functions depend on spatial scales and land-use changes.


Assuntos
Ecossistema , Solo , Animais , Biomassa , Cadeia Alimentar , Pradaria , Herbivoria
5.
Sensors (Basel) ; 19(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626144

RESUMO

Doppler parameter estimation and compensation (DPEC) is an important technique for airborne SAR imaging due to the unpredictable disturbance of real aircraft trajectory. Traditional DPEC methods can be only applied for broadside, small- or medium-squint geometries, as they at most consider the spatial variance of the second-order Doppler phase. To implement the DPEC in very-high-squint geometries, we propose an extended multiple aperture mapdrift (EMAM) method in this paper for better accuracy. This advantage is achieved by further estimating and compensating the spatial variation of the third-order Doppler phase, i.e., the derivative of the Doppler rate. The main procedures of the EMAM, including the steps of sub-view image generation, sliding-window-based cross-correlation, and image-offset-based Doppler parameter estimation, are derived in detail, followed by the analyses for the EMAM performance. The presented approach is evaluated by both computer simulations and real airborne data.

6.
Ecol Appl ; 27(2): 485-502, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27761975

RESUMO

Quantifying the surface energy fluxes of grazed and ungrazed steppes is essential to understand the roles of grasslands in local and global climate and in land use change. We used paired eddy-covariance towers to investigate the effects of grazing on energy balance (EB) components: net radiation (Rn ), latent heat (LE), sensible heat (H), and soil heat (G) fluxes on adjacent grazed and ungrazed areas in a desert steppe of the Mongolian Plateau for a two-year period (2010-2012). Near 95% of Rn was partitioned as LE and H, whereas the contributions of G and other components of the EB were 5% at an annual scale. H dominated the energy partitioning and shared ~50% of Rn . When comparing the grazed and the ungrazed desert steppe, there was remarkably lower Rn and a lower H, but higher G at the grazed site than at the ungrazed site. Both reduced available energy (Rn - G) and H indicated a "cooling effect" feedback onto the local climate through grazing. Grazing reduced the dry year LE but enhanced the wet year LE. Energy partitioning of LE/Rn was positively correlated with the canopy conductivity, leaf area index, and soil moisture. H/Rn was positively correlated with the vapor pressure deficit but negatively correlated with the soil moisture. Boosted regression tree results showed that LE/Rn was dominated by soil moisture in both years and at both sites, while grazing shifted the H/Rn domination from temperature to soil moisture in the wet year. Grazing not only caused an LE shift between the dry and the wet year, but also triggered a decrease in the H/Rn because of changes in vegetation and soil properties, indicating that the ungrazed area had a greater resistance while the grazed area had a greater sensitivity of EB components to the changing climate.


Assuntos
Criação de Animais Domésticos/métodos , Pradaria , Chuva , Animais , China , Clima Desértico , Ecossistema , Comportamento Alimentar , Estações do Ano , Ovinos/fisiologia , Fatores de Tempo
7.
New Phytol ; 211(2): 429-39, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26918765

RESUMO

Upland forests are traditionally thought to be net sinks for atmospheric methane (CH4 ). In such forests, in situ CH4 fluxes on tree trunks have been neglected relative to soil and canopy fluxes. We measured in situ CH4 fluxes from the trunks of living trees and other surfaces, such as twigs and soils, using a static closed-chamber method, and estimated the CH4 budget in a temperate upland forest in Beijing. We found that the trunks of Populus davidiana emitted large quantities of CH4 during July 2014-July 2015, amounting to mean annual emissions of 85.3 and 103.1 µg m(-2)  h(-1) on a trunk surface area basis on two replicate plots. The emission rates were similar in magnitude to those from tree trunks in wetland forests. The emitted CH4 was derived from the heartwood of trunks. On a plot or ecosystem scale, trunk CH4 emissions were equivalent to c. 30-90% of the amount of CH4 consumed by soils throughout the year, with an annual average of 63%. Our findings suggest that wet heartwoods, regardless of rot or not, occur widely in living trees on various habitats, where CH4 can be produced.


Assuntos
Ecossistema , Metano/análise , Solo/química , Árvores/química , Oxirredução , Fatores de Tempo , Madeira/química
8.
Ecology ; 97(1): 65-74, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27008776

RESUMO

Loss of plant diversity with increased anthropogenic nitrogen (N) deposition in grasslands has occurred globally. In most cases, competitive exclusion driven by preemption of light or space is invoked as a key mechanism. Here, we provide evidence from a 9-yr N-addition experiment for an alternative mechanism: differential sensitivity of forbs and grasses to increased soil manganese (Mn) levels. In Inner Mongolia steppes, increasing the N supply shifted plant community composition from grass-forb codominance (primarily Stipa krylovii and Artemisia frigida, respectively) to exclusive dominance by grass, with associated declines in overall species richness. Reduced abundance of forbs was linked to soil acidification that increased mobilization of soil Mn, with a 10-fold greater accumulation of Mn in forbs than in grasses. The enhanced accumulation of Mn in forbs was correlated with reduced photosynthetic rates and growth, and is consistent with the loss of forb species. Differential accumulation of Mn between forbs and grasses can be linked to fundamental differences between dicots and monocots in the biochemical pathways regulating metal transport. These findings provide a mechanistic explanation for N-induced species loss in temperate grasslands by linking metal mobilization in soil to differential metal acquisition and impacts on key functional groups in these ecosystems.


Assuntos
Biodiversidade , Pradaria , Manganês/química , Nitrogênio/química , Plantas/classificação , Solo/química , Biomassa , Nitrogênio/metabolismo , Fotossíntese , Especificidade da Espécie
9.
Glob Chang Biol ; 22(4): 1385-93, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26485056

RESUMO

Grazing exclusion (GE) is considered to be an effective approach to restore degraded grasslands and to improve their carbon (C) sequestration. However, the C dynamics and related controlling factors in grasslands with GE have not been well characterized. This synthesis examines the dynamics of soil C content and vegetation biomass with the recovery age through synthesizing results of 51 sites in grasslands in China. The results illustrate increases in soil C content and vegetation biomass with GE at most sites. Generally, both soil C content and vegetation biomass arrive at steady state after 15 years of GE. In comparison, the rates of increase in above- and belowground biomass declined exponentially with the age of GE, whereas soil C content declined in a milder (linear) way, implying a lagged response of soil C to the inputs from plant biomass. Mean annual precipitation (MAP) and the rate of soil nitrogen (N) change were the main factors affecting the rate of soil C content change. MAP played a major role at the early stage, whereas the rate of soil N change was the major contributor at the middle and late stages. Our results imply that the national grassland restoration projects in China may be more beneficial for C sequestration in humid regions with high MAP. In addition, increased soil N supply to grasslands with GE at the latter recovery stage may enhance ecosystem C sequestration capacity.


Assuntos
Sequestro de Carbono , Carbono/análise , Pradaria , Herbivoria , Nitrogênio/análise , Solo/química , Biomassa , China , Plantas
10.
Glob Chang Biol ; 22(1): 198-207, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26340501

RESUMO

Both 'species fitness difference'-based deterministic processes, such as competitive exclusion and environmental filtering, and 'species fitness difference'-independent stochastic processes, such as birth/death and dispersal/colonization, can influence the assembly of soil microbial communities. However, how both types of processes are mediated by anthropogenic environmental changes has rarely been explored. Here we report a novel and general pattern that almost all anthropogenic environmental changes that took place in a grassland ecosystem affected soil bacterial community assembly primarily through promoting or restraining stochastic processes. We performed four experiments mimicking 16 types of environmental changes and separated the compositional variation of soil bacterial communities caused by each environmental change into deterministic and stochastic components, with a recently developed method. Briefly, because the difference between control and treatment communities is primarily caused by deterministic processes, the deterministic change was quantified as (mean compositional variation between treatment and control) - (mean compositional variation within control). The difference among replicate treatment communities is primarily caused by stochastic processes, so the stochastic change was estimated as (mean compositional variation within treatment) - (mean compositional variation within control). The absolute of the stochastic change was greater than that of the deterministic change across almost all environmental changes, which was robust for both taxonomic and functional-based criterion. Although the deterministic change may become more important as environmental changes last longer, our findings showed that changes usually occurred through mediating stochastic processes over 5 years, challenging the traditional determinism-dominated view.


Assuntos
Fenômenos Fisiológicos Bacterianos , Meio Ambiente , Pradaria , Microbiologia do Solo , Bactérias/genética , China , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Processos Estocásticos
11.
Environ Res ; 144(Pt B): 64-71, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26386629

RESUMO

Grazing profoundly influences vegetation and the subsequent carbon fluxes in various ecosystems. However, little effort has been made to explore the underlying mechanisms for phenological changes and their consequences on carbon fluxes at ecosystem level, especially under the coupled influences of human disturbances and climate change. Here, a manipulative experiment (2012-2013) was conducted to examine both the independent and interactive effects of grazing and watering on carbon fluxes across phenological phases in a desert steppe. Grazing advanced or delayed phenological timing, leading to a shortened green-up phase (GrP: 23.60 days) in 2013 and browning phase (BrP: 12.48 days) in 2012 from high grazing, and insignificant effects on the reproductive phase (ReP) in either year. High grazing significantly enhance carbon uptake, while light grazing reduce carbon uptake in ReP. Watering only delayed the browning time by 5.01 days in 2013, producing no significant effects on any phenophase. Watering promoted the net ecosystem exchange (NEE), ecosystem respiration (ER), and gross ecosystem productivity (GEP) only in the GrP. When calculating the yearly differences in phenophases and the corresponding carbon fluxes, we found that an extended GrP greatly enhanced NEE, but a prolonged ReP distinctly reduced it. The extended GrP also significantly promote GEP. Increases in growing season length appeared promoting ER, regardless of any phenophase. Additionally, the shifts in NEE appeared dependent of the variations in leaf area index (LAI).


Assuntos
Criação de Animais Domésticos , Ciclo do Carbono , Dióxido de Carbono/análise , Clima Desértico , Pradaria , Animais , China , Comportamento Alimentar , Distribuição Aleatória , Ovinos , Fatores de Tempo , Água/análise
12.
Environ Res ; 144(Pt B): 39-48, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26392406

RESUMO

BACKGROUND: As a consequence of global change, intensity and frequency of extreme events such as heat waves (HW) have been increasing worldwide. METHODS: By using a combination of continuous 60-year meteorological and 6-year tower-based carbon dioxide (CO2) flux measurements, we constructed a clear picture of a HWs effect on the dynamics of carbon, water, and vegetation on the Eurasian Songnen meadow steppe. RESULTS: The number of HWs in the Songnen meadow steppe began increasing since the 1980s and the rate of occurrence has advanced since the 2010s to higher than ever before. HWs can reduce the grassland carbon flux, while net ecosystem carbon exchange (NEE) will regularly fluctuate for 4-5 days during the HW before decreasing. However, ecosystem respiration (Re) and gross ecosystem production (GEP) decline from the beginning of the HW until the end, where Re and GEP will decrease 30% and 50%, respectively. When HWs last five days, water-use efficiency (WUE) will decrease by 26%, soil water content (SWC) by 30% and soil water potential (SWP) will increase by 38%. In addition, the soil temperature will still remain high after the HW although the air temperature will recover to its previous state. CONCLUSIONS: HWs, as an extreme weather event, have increased during the last two decades in the Songnen meadow steppe. HWs will reduce the carbon flux of the steppe and will cause a sustained impact. Drought may be the main reason why HWs decrease carbon flux. At the later stages of or after a HW, the ecosystem usually lacks water and the soil becomes so hot and dry that it prevents roots from absorbing enough water to maintain their metabolism. This is the main reason why this grassland carbon exchange decreases during and after HWs.


Assuntos
Ciclo do Carbono , Pradaria , Temperatura Alta , Microclima , Sequestro de Carbono , China , Fenômenos Fisiológicos Vegetais , Água/metabolismo
13.
J Opt Soc Am A Opt Image Sci Vis ; 33(6): 1166-74, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27409446

RESUMO

Video encryption schemes mostly employ the selective encryption method to encrypt parts of important and sensitive video information, aiming to ensure the real-time performance and encryption efficiency. The classic block cipher is not applicable to video encryption due to the high computational overhead. In this paper, we propose the encryption selection control module to encrypt video syntax elements dynamically which is controlled by the chaotic pseudorandom sequence. A novel spatiotemporal chaos system and binarization method is used to generate a key stream for encrypting the chosen syntax elements. The proposed scheme enhances the resistance against attacks through the dynamic encryption process and high-security stream cipher. Experimental results show that the proposed method exhibits high security and high efficiency with little effect on the compression ratio and time cost.

14.
Int J Biol Macromol ; 257(Pt 1): 128602, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056749

RESUMO

Silicate scales are commonly incorporated into cellulose nanofiber (CNF) as functional fillers to enhance electrical insulation and UV-shielding properties. Nevertheless, the addition of substantial quantities of silicate scales in the quest for enhanced functional properties results in reduced interface bonding capability and compromised mechanical properties, thereby restricting their application. Here, inspired from nacre, layered composite paper with excellent mechanical strength, electrical insulation and UV-resistance properties was fabricated through vacuum assisted self-assembly using CNF, PVA and basalt scales (BS). Unlike the conventional blending strategy, the pre-mixed PVA and BS suspension facilitates the formation of Al-O-C bond, thereby enhancing the interfacial bonding between BS and CNF. Consequently, the composite paper (BS@PVA/PVA/CNF) containing 60 wt% BS demonstrates higher mechanical strength-approximately 140 % higher than that of BS/CNF composite paper, achieving a strength of 33.5 MPa. Additionally, it demonstrates enhanced dielectric properties, surpassing those of CNF paper by up to 107 %. Moreover, it exhibits robust ultraviolet-resistant aging performance, retaining ~87 % of its tensile strength after undergoing a simulated two-year aging period. As a result, this work presents a simple and innovative design strategy for enhancing interfacial bonding and optimizing layer structure, providing essential guidelines for large-scale production of high-performance insulation and aging-resistant composite paper.


Assuntos
Nácar , Celulose , Silicatos
15.
ACS Appl Mater Interfaces ; 16(3): 4045-4055, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38198227

RESUMO

The flame-retardant paper has gradually evolved into a necessary material in various industries as a result of the rising importance of fire safety, energy efficiency, and environmental preservation. Traditional cellulose paper requires the addition of a large amount of flame retardants to achieve flame retardancy, which poses a serious threat to mechanical quality and the environment. Therefore, there is an urgent need to develop inorganic fiber flame-retardant paper with good flexibility, high thermal stability, and inherent flame retardancy. Herein, inspired by the "brick-and-mortar" layered structure of nature nacre, we developed a layered composite paper with a unique alternating arrangement of organic-inorganic fibers by synergistically integrating environmentally sustainable basalt fiber (BF) and high-performance aramid nanofibers (ANFs) through a vacuum-assisted filtration process. The as-prepared ANFs/BF composite paper exhibited low thermal conductivity (0.024 W m-1 K-1), high tensile strength (54.22 MPa), and excellent flexibility. Thanks to its excellent thermal stability, the mechanical strength remains at a high level (92%) after heat treatment at 300 °C for 60 min. Furthermore, the peak heat release rate and smoke generation of ANFs/BF composite paper decreased by 44.6 and 95.3%, respectively. Therefore, the composite paper is promising for applications as a protective layer in flexible electronic devices, cables, and fire-retardant and high-temperature fields.

16.
Sci Total Environ ; 946: 174054, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897466

RESUMO

Up to date, most studies reported that degradation is worsened in the grassland ecosystems of Inner Mongolia and adjacent regions as a result of intensified grazing. This seems to be scientific when considering the total forage or total above-ground biomass as a degradation indicator, but it does not hold true in terms of soil organic carbon density (SOCD). In this study, we quantified the changes of grassland ecosystem carbon stock in Inner Mongolia and adjacent regions from the 1980s to 2000s and identified the major drivers influencing these variations, using the National Grassland Resource Inventory and Soil Survey Dataset in 1980s and the Inventory data during 2002 to 2009 covering 624 sampling plots concerned vegetal traits and edaphic properties across the study region. The result indicated that the above-, below-ground and total vegetation biomass declined from the 1980s to 2000s by ∼ 10 %. However, total forage production increased by 6.72 % when considering livestock intake. SOCD remained stable despite a 67 % increase in grazing intensity. A generalized linear model (GLIM) analysis suggested that an increase in grazing intensity from the 1980s to 2000s could only explain 1.04 % of the total biomass change, while changes in precipitation and temperature explained 17.7 % (p < 0.05) of total vegetation biomass (TVB) change. Meanwhile, SOCD change during 1980s - 2000s could be explained 10.08 % by the soil texture (p < 0.05) and <1.6 % by changes in climate and livestock. This implies that the impacts of climate change on grassland biomass are more significant than those of grazing utilization, and SOCD was resistant to both climate change and intensified grazing. Overall, intensified grazing did not result in significant negative impacts on the grassland carbon stocks in the study region during the 1980s and 2000s. The grassland ecosystems possess a mechanism to adjust their root-shoot ratio, enabling them to maintain resilience against grazing utilization.

17.
ACS Appl Mater Interfaces ; 15(29): 35495-35506, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37439589

RESUMO

In the field of electromagnetic shielding, it has become an important trend to manufacture thinner and better-performing electromagnetic interference (EMI) shielding materials. However, EMI shielding materials that are recyclable and resistant to extreme environments are of great significance for sustainable development and expanding their application areas. In this study, a composite paper with a "rebar-concrete" layered structure through the vacuum-assisted filtration approach by utilizing basalt fibers (BF) and aramid nanofibers (ANFs) with excellent temperature resistance and multiwalled carbon nanotubes with high electrical conductivity was prepared. The composite paper not only delivers a high electrical conductivity of 15.9 S cm-1 and a high electromagnetic interference shielding efficiency (EMI SE) of 24.6 dB but also exhibits a high specific shielding efficiency (SSE/t) of 12,504 dB cm2 g-1 at a thickness of 48 µm. Thanks to the excellent thermal stability of basalt fibers and aramid nanofibers, the composite paper exhibits long-term stable EMI shielding performance and structural integrity in various extreme environments, including fire, high/low temperature (-196 to 300 °C), and acid-base corrosion. Furthermore, the BF/ANF/CNT composite paper also shows excellent Joule heating performance, rapid electrothermal response, and good temperature controllability. Based on these excellent properties, the BF/ANF/CNT composite paper shows tremendous potential for practical applications to meet the requirements of various extreme environments.

18.
Vet Microbiol ; 284: 109826, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37421928

RESUMO

Pseudorabies virus (PRV) preferably invades neural tissue and various organs, whereupon may result in multisystemic lesions. Pyroptosis mediated by proteolytic cleavage of gasdermin D (GSDMD) by inflammatory caspases (caspase-1/4/5/11), is closely associated with the activation of inflammasomes, a multiprotein proinflammatory complex. However, further studies on the mechanisms regarding PRV-induced pyroptosis in its natural host are required. Herein, it is demonstrated that PRV infection triggered GSDMD- not GSDME-mediated pyroptosis in porcine alveolar macrophage cells, resulting in increased secretion of IL-1ß and LDH. During this process, caspase-1 was activated and participated in the cleaving of GSDMD. Interestingly, we found that the viral replication process or protein production is required to induce pyroptotic cell death. Also, our findings showed that PRV triggered NLRP3 inflammasome activation, which was associated with the production of reactive oxygen species (ROS) and potassium efflux. In addition to the NLRP3 inflammasome, the IFI16 inflammasome was also activated. Importantly, the NLRP3- and IFI16- inflammasomes were both involved in pyroptosis during PRV infection. Finally, we observed that the cleaved GSDMD, activated caspase-1, increased IFI16 levels, and elevated NLRP3 protein in PRV-infected tissues (brain and lung), supporting the occurrence of pyroptosis and the activation of NLRP3- and IFI16- inflammasome in PRV-infected pigs. This research advances our understanding of the PRV-mediated inflammatory response and cell death pathways, providing a deeper knowledge of effective treatments for pseudorabies.


Assuntos
Herpesvirus Suídeo 1 , Inflamassomos , Animais , Suínos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/fisiologia , Herpesvirus Suídeo 1/metabolismo , Caspases , Caspase 1/metabolismo
19.
Adv Sci (Weinh) ; 10(27): e2302371, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37485624

RESUMO

The rapid development of modern electrical equipment has led to urgent demands for electrical insulating materials with mechanical reliability and excellent dielectric properties. Herein, basalt nanosheets (BSNs) with high aspect ratios (≈780.1) are first exfoliated from basalt scales (BS) through a reliable chemical/mechanical approach. Meanwhile, inspired by the layered architecture of natural nacre, nacre-mimetic composite nanopapers are reported containing a 3D aramid nanofibers (ANF) framework as a matrix and BSNs as ideal building blocks through vacuum-assisted filtration. The as-prepared ANF-BSNs composite nanopapers exhibit considerably enhanced mechanical properties with ultralow BSNs content. These superiorities are wonderfully integrated with exceptional dielectric breakdown strength, prominent volume resistivity, and extremely low dielectric constant and loss, which are far superior to conventional nacre-mimetic composite nanopapers. Notably, the tensile strength and breakdown strength of ANF-BSNs composite nanopapers with a mere 1.0 wt% BSNs reach 269.40 MPa and 77.91 kV mm-1 , respectively, representing an 87% and 133% increase compared to those of the control ANF nanopaper. Their properties are superior to those of previously reported nacre-mimetic composite nanopapers and commercial insulating micropapers, indicating that ANF-BSNs composite nanopapers are a highly promising electrical insulating material for miniaturized high-power electrical equipment.

20.
Brain Sci ; 13(10)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37891726

RESUMO

The purpose of this study was to explore the resting-state functional connectivity (FC) changes among the pain matrix and other brain regions in herpes zoster (HZ) and postherpetic neuralgia (PHN) patients. Fifty-four PHN patients, 52 HZ patients, and 54 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans. We used a seed-based FC approach to investigate whether HZ and PHN patients exhibited abnormal FC between the pain matrix and other brain regions compared to HCs. A random forest (RF) model was constructed to explore the feasibility of potential neuroimaging indicators to distinguish the two groups of patients. We found that PHN patients exhibited decreased FCs between the pain matrix and the putamen, superior temporal gyrus, middle frontal gyrus, middle cingulate gyrus, amygdala, precuneus, and supplementary motor area compared with HCs. Similar results were observed in HZ patients. The disease durations of PHN patients were negatively correlated with those aforementioned impaired FCs. The results of machine learning experiments showed that the RF model combined with FC features achieved a classification accuracy of 75%. Disrupted FC among the pain matrix and other regions in HZ and PHN patients may affect multiple dimensions of pain processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA