Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(39): 17748-17752, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36149317

RESUMO

Molecular catalysis of water oxidation has been intensively investigated, but its mechanism is still not yet fully understood. This study aims at capturing and identifying key short-lived intermediates directly during the water oxidation catalyzed by a cobalt-tetraamido macrocyclic ligand complex using a newly developed an in situ electrochemical mass spectrometry (EC-MS) method. Two key ligand-centered-oxidation intermediates, [(L2-)CoIIIOH] and [(L2-)CoIIIOOH], were directly observed for the first time, and further confirmed by 18O-labeling and collision-induced dissociation studies. These experimental results further confirmed the rationality of the water nucleophilic attack mechanism for the single-site water oxidation catalysis. This work also demonstrated that such an in situ EC-MS method is a promising analytical tool for redox catalytic processes, not only limited to water oxidation.


Assuntos
Metais , Água , Catálise , Cobalto , Ligantes , Espectrometria de Massas , Oxirredução , Água/química
2.
Anal Chem ; 94(27): 9801-9810, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35766488

RESUMO

Charge (ion and electron)-transfer reactions at a liquid/liquid interface are critical processes in many important biological and chemical systems. An ion-transfer (IT) process is usually very fast, making it difficult to accurately measure its kinetic parameters. Nano-liquid/liquid interfaces supported at nanopipettes are advantageous approaches to study the kinetics of such ultrafast IT processes due to their high mass transport rate. However, correct measurements of IT kinetic parameters at nanointerfaces supported at nanopipettes are inhibited by a lack of knowledge of the nanometer-sized interface geometry, influence of the electric double layer, wall charge polarity, etc. Herein, we propose a new electrochemical characterization equation for nanopipettes and make a suggestion on the shape of a nano-water/1,2-dichloroethane (nano-W/DCE) interface based on the characterization and calculation results. A theoretical model based on the Poisson-Nernst-Planck equation was applied to systematically study how the electric double layer influences the IT process of cations (TMA+, TEA+, TPrA+, ACh+) and anions (ClO4-, SCN-, PF6-, BF4-) at the nano-W/DCE interface. The relationships between the wall charge conditions and distribution of concentration and potential inside the nanopipette revealed that the measured standard rate constant (k0) was enhanced when the polarity of the ionic species was opposite to the pipette wall charge and reduced when the same. This work lays the right foundation to obtain the kinetics at the nano-liquid/liquid interfaces.


Assuntos
Dicloretos de Etileno , Ânions , Cátions , Dicloretos de Etileno/química , Cinética , Eletricidade Estática
3.
Phys Chem Chem Phys ; 24(36): 22331, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36098257

RESUMO

Correction for 'Enhanced photoluminescence stability and internal defect evolution of the all-inorganic lead-free CsEuCl3 perovskite nanocrystals' by Yalei Gao et al., Phys. Chem. Chem. Phys., 2022, 24, 18860-18867, https://doi.org/10.1039/D2CP01374F.

4.
Phys Chem Chem Phys ; 24(31): 18860-18867, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35912921

RESUMO

Perovskite materials are prominent candidates for many high-performance optoelectronic devices. The rare-earth lead-free CsEuCl3 perovskite nanocrystals are extremely unstable, which makes it very difficult to study their physicochemical properties and applications. Herein, we improved the stability of rare-earth based CsEuCl3 nanocrystals by employing a silica-coating for the first time. Simultaneously, the naturally formed "hollow" regions with an obviously blue-shifted PL emission were first observed inside the CsEuCl3 nanocrystals during the period of storage. Density functional theory (DFT) calculations showed that the formed "hollow" regions are due to the internal defect evolution in the perovskite lattice, which is also responsible for the increase of the bandgap and the blue-shift of emission. Additionally, the rapid decline of luminescence is probably due to the nanocrystals' final cracking with the expansion of the "hollow" regions. This work helps to understand the relationship between defects and luminescence properties, and provides guidance for the design of more stable lead-free perovskite nanocrystals.

5.
Acta Biochim Biophys Sin (Shanghai) ; 54(3): 400-408, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35538033

RESUMO

Tetraspanin CD82 often participates in regulating the function of epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor (c-Met). Palmitoylation is a post-translational modification that contributes to tetraspanin web formation and affects tetraspanin-dependent cell signaling. However, the molecular mechanisms by which CD82 palmitoylation affects the localization and stability of EGFR and c-Met have not yet been elucidated. This study focuses on the expression and distribution of EGFR and c-Met in breast cancer as well as the related metabolic pathways and molecular mechanisms associated with different CD82 palmitoylation site mutations. The results show that CD82 with a palmitoylation mutation at Cys5+Cys74 can promote the internalization of EGFR. EGFR is internalized and strengthened by direct binding to CD82 with the tubulin assistance and located at the recycling endosome. After studying the recycling pathway marker proteins Rab11a and FIP2, we found that formation of the EGFR/CD82/Rab11a/FIP2 complex promotes the internalization and metabolism of EGFR through the recycling pathway and results in the re-expression of EGFR and CD82 on the cell membrane.


Assuntos
Proteína Kangai-1 , Lipoilação , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteína Kangai-1/genética , Proteína Kangai-1/metabolismo , Mutação , Fosforilação
6.
Adv Exp Med Biol ; 1250: 189-198, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32601946

RESUMO

Bulk blending is considered as one of the most effective and straightforward ways to improve the hemo-compatibility of blood-contacting polymeric biomaterials among many surface modification methods. Zwitterionic structure-, glycocalyx-like structure-, and heparin-like structure-based oligomers have been synthesized as additives and blended with base polymers to improve the blood compatibility of base polymers. Fluorinated end- and side-functionalized oligomers could promote the migration of functionalized groups to the surface of biomedical polymers without changing their bulk properties, and it highly depends on the number and concentration of functional groups. Moreover, oligomers having both zwitterion and fluorine are receiving considerable attention due to their desirable phase separation, which can avoid undesired protein adsorption and platelet adhesion. The surface analysis of the surface-modified materials is usually investigated by analytical tools such as contact angle measurement, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Blood compatibility is mainly evaluated via platelet adhesion and protein adsorption test, and the result showed a significant decrease in the amount of undesirable adsorption. These analyses indicated that surface modification using bulk blending technique effectively improves blood compatibility of polymeric biomaterials.


Assuntos
Materiais Biocompatíveis , Polímeros , Adsorção , Materiais Biocompatíveis/química , Humanos , Adesividade Plaquetária , Polímeros/química , Propriedades de Superfície
7.
Anal Chem ; 91(22): 14666-14671, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31697065

RESUMO

Detection of inorganic phosphate is very important in environmental and health care applications. In this work, we found that phenomenon similar to "catalytic hydrogen wave" occurred on a molybdenum phosphide (MoP) modified electrode in the presence of phosphate, that is, a new wave of catalytic hydrogen evolution appeared before the normal hydrogen evolution reaction. The catalytic hydrogen wave arose from a structure similar to phosphomolybdic acid (noted as MoPO), which was formed by the interaction between phosphate and molybdenum oxides on the surface of the MoP modified electrode, resulting in the altered surface structure and adjusted interface catalytic activity. A novel phosphate electrochemical sensor was constructed based on this phenomenon with a linear range from 0.10 to 20.0 mmol·L-1, an actually determined minimum concentration of 0.030 mmol·L-1, and recoveries of 94%-107%, and this sensor was successfully applied to the detection of phosphate in human blood. Furthermore, this work proposes a new sensing method based on catalytic hydrogen waves on the modified electrodes.


Assuntos
Hidrogênio/química , Molibdênio/química , Fosfatos/sangue , Compostos de Fósforo/química , Catálise , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Humanos , Óxidos/química
8.
Anal Chem ; 90(19): 11622-11628, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30207703

RESUMO

A simple strategy for one-step fabrication of tris(bipyridine)ruthenium(II) (Ru(bpy)32+)-functionalized metal-organic framework (Ru-MOF) thin films using a self-assembly approach assisted by an electrochemical way was introduced. In this protocol, the electrochemically driven cooperative reaction of Ru(bpy)32+ as an electrochemiluminescent (ECL) probe and a structure-directing agent, trimesic acid (H3btc) as a ligand, and Zn(NO3)2 as the Zn2+ source leads to an one-step and simultaneous synthesis and deposition of the MOF onto the electrode surface. Characterization of the Ru-MOF thin films was performed with scanning electron microscopy, Fourier transform infrared, and X-ray photoelectron spectroscopy. Scanning ion conductance microscopy was specially applied in situ to image the topography and thickness of the Ru-MOF thin films. The Ru-MOF thin films as a sensing platform show excellent ECL behavior because of plenty of Ru(bpy)32+ molecules encapsulated in the frameworks. On the basis of the Ru-MOF modified electrodes, an ultrasensitive label-free ECL immunosensing method for the human heart-type fatty-acid-binding protein has been developed with a wide linear response range (150 fg mL-1-150 ng mL-1) and a very low limit of detection (2.6 fg mL-1). The prepared immunosensor also displayed excellent stability and good specificity in the test of practical samples.


Assuntos
Proteínas de Ligação a Ácido Graxo/análise , Imunoensaio/métodos , Estruturas Metalorgânicas/química , Rutênio/química , 2,2'-Dipiridil/química , Técnicas Eletroquímicas , Eletrodos , Proteínas de Ligação a Ácido Graxo/imunologia , Humanos , Imunoensaio/instrumentação , Limite de Detecção , Medições Luminescentes
9.
Anal Chem ; 90(4): 2826-2832, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29411611

RESUMO

In many electrochemiluminescent (ECL) systems, coreactants play crucial roles in the redox-induced light emission process at the electrode surface. In this work, a novel and environment-friendly nanoplatform for ECL immunosensing enabled by triethanolamine (TEOA)-modified gold nanoparticles (TEOA@AuNPs) is reported. The monodisperse TEOA@AuNPs are fabricated by one-pot synthesis using TEOA as both reducing and stabilizing agent. Then the TEOA@AuNPs-modified electrode not only acted as coreactant for Ru(bpy)32+ ECL system but also provided a carrier for antibody 1 to form label-free immunosensor through an interaction between antigen and antibody. The unique structure of the TEOA@AuNPs loaded a large amount of coreactant of Ru(bpy)32+, which shortened the electron-transfer distance from the AuNPs surface to the appended TEOA molecules, thereby greatly enhancing the ECL efficiency and amplifying the ECL signal. In addition, Ru(bpy)32+-doped silica (RuSiO2) nanoparticles and antibody 2 were combined to form a composite for labels and a sandwich-type ECL immunosensor has been constructed. The possible mechanism of those ECL systems have also been proposed and confirmed by the EC-MS hyphenated technique. The human cardiopathy biomarker, cardiac troponin I (cTnI), was detected in a wide linear concentration range and the limit of detection (LOD) was 34 or 5.5 fg mL-1 by using the proposed label-free or labeling ECL immunoassay method.


Assuntos
Técnicas Eletroquímicas , Etanolaminas/química , Ouro/química , Imunoensaio , Medições Luminescentes , Nanopartículas Metálicas/química , Biomarcadores/análise , Eletrodos , Humanos , Tamanho da Partícula , Propriedades de Superfície , Troponina I/análise
10.
Analyst ; 141(16): 4859-62, 2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27412731

RESUMO

A simple, cheap and practicable miniaturized electrochemical device based on a biconical microchannel was developed, for which only 1 µL sample solution was needed to implement a typical electrochemical experiment. The practicability of the designed device was validated by detecting uric acid as a model molecule in human serum.

11.
Anal Chem ; 87(23): 11819-25, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26499518

RESUMO

In a hydrophilic droplet three-electrode system, electroactive species within the droplet play very important roles in the electron-transfer (ET) process on the solid/electrolyte interface, which can then induce an ion-transfer (IT) reaction at the liquid/liquid interface. In this work, several redox couples and electroactive species are chosen to study ET-IT coupling processes at the water/1,2-dichloroethane (W/DCE) interface by cyclic voltammetry (CV) and Osteryoung square wave voltammetry (OSWV). Among them, the redox couple Ru(NH3)6(3+/2+) has been found to have the widest useful potential window of about 1.2 V. A hydrophilic droplet three-electrode system using a single electroactive molecule instead of a redox couple has been confirmed to be stable and has similar functionality to a redox couple. In addition, the lipophilicity of antiplatelet drug clopidogrel at the W/DCE interface is investigated and its ionic partition diagram has been constructed. Protonated clopidogrel is detected in a linear concentration range of 5.0-50 µM and the limit of detection (LOD) is calculated to be 3.0 µM by using the hydrophilic droplet system Ru(NH3)6(3+/2+) and OSWV.

12.
Anal Chem ; 86(24): 12064-9, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25391335

RESUMO

A layered MoS2-thionin composite was prepared by sonicating their mixture in an ionic liquid and gradient centrifugation. Because DNA is rarely present in single-stranded form, either naturally or after PCR amplification, the composite was used for fabrication of a double-stranded DNA (dsDNA) electrochemical biosensor due to stable electrochemical response, intercalation, and electrostatic interaction of thionin with DNA. The linear range over dsDNA concentration from 0.09 ng mL(-1) to 1.9 ng mL(-1) is obtained, and moreover, it is suitable for the detection of single-stranded DNA (ssDNA). The biosensor has been applied to the detection of circulating DNA from healthy human serum, and satisfactory results have been obtained. The constructed DNA electrochemical biosensor shows potential application in the fields of bioanalysis and clinic diagnosis. Furthermore, this work proposes a new method to construct electrochemical biosensors based on MoS2 sheets.


Assuntos
Análise Química do Sangue/instrumentação , DNA/análise , Eletroquímica , Molibdênio/química , Tioninas/química , Técnicas Biossensoriais/instrumentação , DNA/química , Humanos , Limite de Detecção , Microscopia Eletrônica de Varredura
13.
Anal Chem ; 86(14): 7001-8, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24958198

RESUMO

Despite great improvements in the past decades, the controllable fabrication of metal nanoelectrodes still remains very challenging. In this work, a simple and general way to fabricate metal nanoelectrodes (Ag, Au, and Pt) is developed. On the basis of interfacial reactions at nano-liquid/liquid interfaces supported at nanopipettes, the nanoparticles can be formed in situ and have been used to block the orifices of pipettes to make nanoelectrodes. The effect of the driving force for interfacial reaction at the liquid/liquid interface, the ratio of redox species in organic and aqueous phases, and the surface charge of the inner wall of a pipette have been studied. The fabricated nanoelectrodes have been characterized by scanning electron microscopy (SEM) and electrochemical techniques. A silver electrode with about 10 nm in radius has been employed as the scanning electrochemical microscopy (SECM) probe to explore the thickness of a water/nitrobenzene (W/NB) interface, and this value is equal to 0.8 ± 0.1 nm (n = 5). This method of fabrication of nanoelectrodes can be extended to other metal or semiconductor electrodes.

14.
Analyst ; 139(9): 2243-8, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24652224

RESUMO

We demonstrate, for the first time, an electrochemical sensor that provides antipodal signals upon application of square wave voltammetry (SWV), for enantioselective recognition of 3,4-dihydroxyphenylalanine based on chiral single-walled carbon nanotubes (SWCNTs) in the presence of sulphuric acid. Interestingly, the enantioselectivity was not observed using the common method of cyclic voltammetry (CV) but the SWV peak currents of enantiomers were found to be quite different and hence the enantiomers could be successfully recognized. Moreover, the antipodal signals provided by two SWV scan modes offer the possibility for results to be confirmed mutually, showing a great practical value and analytical application prospects.


Assuntos
Di-Hidroxifenilalanina/análise , Técnicas Eletroquímicas/instrumentação , Nanotubos de Carbono , Ácidos Sulfúricos/análise , Estereoisomerismo
15.
Anal Chem ; 85(21): 10289-95, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24067077

RESUMO

Monodispersed surfactant-free MoS2 nanoparticles with sizes of less than 2 nm were prepared from bulk MoS2 by simple ultrasonication and gradient centrifugation. The ultrasmall MoS2 nanoparticles expose a large fraction of edge sites, along with their high surface area, which lead to attractive electrocatalytic activity for reduction of H2O2. An extremely sensitive H2O2 biosensor based on MoS2 nanoparticles with a real determination limit as low as 2.5 nM and wide linear range of 5 orders of magnitude was constructed. On the basis of this biosensor, the trace amount of H2O2 released from Raw 264.7 cells was successfully recorded, and an efficient glucose biosensor was also fabricated. Since H2O2 is a byproduct of many oxidative biological reactions, this work serves as a pathway for the application of MoS2 in the fields of electrochemical sensing and bioanalysis.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas/métodos , Peróxido de Hidrogênio/análise , Molibdênio/química , Nanopartículas , Animais , Linhagem Celular , Limite de Detecção , Camundongos , Microscopia Eletrônica de Transmissão
16.
Chemistry ; 19(36): 11939-48, 2013 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-23873743

RESUMO

MoS2 particles with different size distributions were prepared by simple ultrasonication of bulk MoS2 followed by gradient centrifugation. Relative to the inert microscale MoS2, nanoscale MoS2 showed significantly improved catalytic activity toward the oxygen-reduction reaction (ORR) and hydrogen-evolution reaction (HER). The decrease in particle size was accompanied by an increase in catalytic activity. Particles with a size of around 2 nm exhibited the best dual ORR and HER performance with a four-electron ORR process and an HER onset potential of -0.16 V versus the standard hydrogen electrode (SHE). This is the first investigation on the size-dependent effect of the ORR activity of MoS2, and a four-electron transfer route was found. The exposed abundant Mo edges of the MoS2 nanoparticles were proven to be responsible for the high ORR catalytic activity, whereas the origin of the improved HER activity of the nanoparticles was attributed to the plentiful exposed S edges. This newly discovered process provides a simple protocol to produce inexpensive highly active MoS2 catalysts that could easily be scaled up. Hence, it opens up possibilities for wide applications of MoS2 nanoparticles in the fields of energy conversion and storage.

17.
Polymers (Basel) ; 15(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37836060

RESUMO

Nanoparticle delivery of functional molecules or vaccines is an effective method for the treatment of many diseases. This study aims to design ginsenoside Rh2-conjugated O-carboxymethyl chitosan (O-CMC/Rh2) as a drug delivery system and explore its anti-nociceptive effects. O-CMC/Rh2 was synthesized with an esterification reaction, and its chemical composition and morphology were evaluated using proton nuclear magnetic resonance (1H NMR), the attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, and scanning electron microscopy (SEM). In addition, the in vitro cumulative release of Rh2 from the O-CMC/Rh2 was also evaluated under different pH conditions. The results showed that the ginsenoside Rh2 was successfully conjugated to the O-CMC matrix and exhibited a highly porous structure after conjugation, facilitating the release of Rh2 from O-CMC. Complete Freund's adjuvant (CFA) and burn injury-induced pain models were used to evaluate the anti-nociceptive effects of O-CMC/Rh2 on inflammatory pain. O-CMC/Rh2 reduced CFA-induced pain hypersensitivity in a dose-dependent manner and had a longer analgesic effect than Rh2. In addition, O-CMC/Rh2 also relieved the chronic pain induced by bury injury. These results indicated that O-CMC/Rh2 could be useful in reducing inflammatory pain, thus possessing a potential medicinal application in pain therapy.

18.
Polymers (Basel) ; 15(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37896437

RESUMO

As environmental regulations become stricter, weight- and cost-effective fiber-reinforced polymer composites are being considered as alternative materials in the automobile industry. Rapidly impregnating resin into the reinforcing fibers is critical during liquid composite molding, and the optimization of resin impregnation is related to the cycle time and quality of the products. In this review, various resins capable of rapid impregnation, including thermoset and thermoplastic resins, are discussed for manufacturing fiber-reinforced composites used in the automobile industry, along with their advantages and disadvantages. Finally, vital factors and perspectives for developing rapidly impregnated resin-based fiber-reinforced composites for automobile applications are discussed.

19.
Int J Biol Macromol ; 250: 126305, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37573905

RESUMO

Chitosan/TiO2 functionalized polypropylene (CS/TiO2/PP) nonwoven fabrics were fabricated through crosslinking of chitosan with glutaraldehyde followed by loading of TiO2 nanoparticles. The functionalized CS/TiO2/PP has super hydrophilicity and excellent visible light induced photocatalytic antibacterial properties owing to the synergistic effects of CS and TiO2. The photocatalytic degradation performance was determined by assessing the degradation of methyl blue under simulated visible light irradiation and its recyclability was also evaluated. In addition, SEM images demonstrated that TiO2 nanoparticles were distributed evenly on the surface of the 2 g/L CS/TiO2/PP. Meanwhile, the polypropylene surface showed a significant increase in hydrophilicity after being treated with chitosan and TiO2. The photocatalytic degradation results revealed that CS/TiO2/PP had higher photocatalytic properties than those of pure PP under visible light, and the degradation rate of methylene blue reached 96.4 % after 90 min of light exposure. Compared to pure PP, the antibacterial properties of CS/TiO2/PP significantly increased, and the bacterial reduction percentages were increased to 98.7 % and 96.3 %, against E. coli and S. aureus, respectively. The functionalized CS/TiO2/PP composites exhibited promising potential in environmentally friendly antibacterial materials.

20.
Biomater Res ; 27(1): 58, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291675

RESUMO

The arterial occlusive disease is one of the leading causes of cardiovascular diseases, often requiring revascularization. Lack of suitable small-diameter vascular grafts (SDVGs), infection, thrombosis, and intimal hyperplasia associated with synthetic vascular grafts lead to a low success rate of SDVGs (< 6 mm) transplantation in the clinical treatment of cardiovascular diseases. The development of fabrication technology along with vascular tissue engineering and regenerative medicine technology allows biological tissue-engineered vascular grafts to become living grafts, which can integrate, remodel, and repair the host vessels as well as respond to the surrounding mechanical and biochemical stimuli. Hence, they potentially alleviate the shortage of existing vascular grafts. This paper evaluates the current advanced fabrication technologies for SDVGs, including electrospinning, molding, 3D printing, decellularization, and so on. Various characteristics of synthetic polymers and surface modification methods are also introduced. In addition, it also provides interdisciplinary insights into the future of small-diameter prostheses and discusses vital factors and perspectives for developing such prostheses in clinical applications. We propose that the performance of SDVGs can be improved by integrating various technologies in the near future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA