Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Pregnancy Childbirth ; 24(1): 456, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951757

RESUMO

BACKGROUND: TBX6, a member of the T-box gene family, encodes the transcription factor box 6 that is critical for somite segmentation in vertebrates. It is known that the compound heterozygosity of disruptive variants in trans with a common hypomorphic risk haplotype (T-C-A) in the TBX6 gene contribute to 10% of congenital scoliosis (CS) cases. The deletion of chromosome 17q12 is a rare cytogenetic abnormality, which often leads to renal cysts and diabetes mellitus. However, the affected individuals often exhibit clinical heterogeneity and incomplete penetrance. METHODS: We here present a Chinese fetus who was shown to have CS by ultrasound examination at 17 weeks of gestation. Trio whole-exome sequencing (WES) was performed to investigate the underlying genetic defects of the fetus. In vitro functional experiments, including western-blotting and luciferase transactivation assay, were performed to determine the pathogenicity of the novel variant of TBX6. RESULTS: WES revealed the fetus harbored a compound heterozygous variant of c.338_340del (p.Ile113del) and the common hypomorphic risk haplotype of the TBX6 gene. In vitro functional study showed the p.Ile113del variant had no impact on TBX6 expression, but almost led to complete loss of its transcriptional activity. In addition, we identified a 1.85 Mb deletion on 17q12 region in the fetus and the mother. Though there is currently no clinical phenotype associated with this copy number variation in the fetus, it can explain multiple renal cysts in the pregnant woman. CONCLUSIONS: This study is the first to report a Chinese fetus with a single amino acid deletion variant and a T-C-A haplotype of TBX6. The clinical heterogeneity of 17q12 microdeletion poses significant challenges for prenatal genetic counseling. Our results once again suggest the complexity of prenatal genetic diagnosis.


Assuntos
Cromossomos Humanos Par 17 , Haplótipos , Heterozigoto , Proteínas com Domínio T , Humanos , Proteínas com Domínio T/genética , Feminino , Cromossomos Humanos Par 17/genética , Gravidez , Adulto , Deleção Cromossômica , Sequenciamento do Exoma , Deleção de Sequência , Feto/anormalidades , Ultrassonografia Pré-Natal
2.
Nucleic Acids Res ; 50(20): 11755-11774, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36350636

RESUMO

Mitochondrial translation is of high significance for cellular energy homeostasis. Aminoacyl-tRNA synthetases (aaRSs) are crucial translational components. Mitochondrial aaRS variants cause various human diseases. However, the pathogenesis of the vast majority of these diseases remains unknown. Here, we identified two novel SARS2 (encoding mitochondrial seryl-tRNA synthetase) variants that cause a multisystem disorder. c.654-14T > A mutation induced mRNA mis-splicing, generating a peptide insertion in the active site; c.1519dupC swapped a critical tRNA-binding motif in the C-terminus due to stop codon readthrough. Both mutants exhibited severely diminished tRNA binding and aminoacylation capacities. A marked reduction in mitochondrial tRNASer(AGY) was observed due to RNA degradation in patient-derived induced pluripotent stem cells (iPSCs), causing impaired translation and comprehensive mitochondrial function deficiencies. These impairments were efficiently rescued by wild-type SARS2 overexpression. Either mutation caused early embryonic fatality in mice. Heterozygous mice displayed reduced muscle tissue-specific levels of tRNASers. Our findings elucidated the biochemical and cellular consequences of impaired translation mediated by SARS2, suggesting that reduced abundance of tRNASer(AGY) is a key determinant for development of SARS2-related diseases.


Assuntos
Aminoacil-tRNA Sintetases , COVID-19 , Serina-tRNA Ligase , Humanos , Camundongos , Animais , RNA de Transferência de Serina/genética , Serina-tRNA Ligase/genética , Serina-tRNA Ligase/metabolismo , Aminoacil-tRNA Sintetases/genética , Aminoacilação
3.
Neurogenetics ; 24(2): 95-101, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36757469

RESUMO

KDM3B is located on chromosome 5q31 and encodes KDM3B, which is involved in histone demethylation and epigenetic regulation. Pathogenic KDM3B variants cause a dominantly inherited disorder presenting with intellectual disability (ID), short stature, and facial dysmorphism, named Diets-Jongmans syndrome. We describe two patients with KDM3B variants presenting with Diets-Jongmans syndrome. Genetic testing was performed because of the clinical data and a lack of a clear diagnosis in both patients. Candidate variants were verified by Sanger sequencing. After KDM3B variants were detected, in silico tools were used to predict the pathogenicity of the missense variants. A minigene assay was performed to evaluate the splicing effects of the c.5070 + 1G > A variant on KDM3B. Patient 1 mainly presented with repetitive upper respiratory tract infection and patient 2 presented with palpitation, shortness of breath, and pitting edema; both had ID. Whole exome sequencing identified variants of KDM3B. Patient 1 had the de novo KDM3B c.5070 + 1G > A variant, whereas patient 2 had the c.2828G > A (p.R943Q) variant. Transcriptional experiments of the splicing variant c.5070 + 1G > A revealed aberrant transcripts leading to truncated protein products. We found two pathogenic variants in KDM3B, one of which is novel. Both patients had additional clinical presentations, and patient 1 had transient neutropenia. KDM3B c.5070 + 1G > A is the first KDM3B splice-site variant and was identified as a germline variant. Neutropenia and cardiomyopathy are newly found presentations of Diets-Jongmans syndrome. Our report enriches our knowledge of the genotypic spectrum of the KDM3B variants and phenotypic diversity of Diets-Jongmans syndrome.


Assuntos
Epigênese Genética , Deficiência Intelectual , Humanos , Splicing de RNA , Deficiência Intelectual/diagnóstico , Mutação de Sentido Incorreto , Dieta , Histona Desmetilases com o Domínio Jumonji/genética
4.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(6): 693-700, 2023 Dec 12.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-38105687

RESUMO

OBJECTIVES: To analyze the clinical and genetic characteristics of children with autosomal dominant neurodevelopmental disorders caused by kinesin family member 1A (KIF1A) gene variation. METHODS: Clinical and genetic testing data of 6 children with KIF1A gene de novo heterozygous variation diagnosed in Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine from the year 2018 to 2020 were retrospectively analyzed. Pathogenic variants were identified based on whole exome sequencing, and verified by Sanger sequencing. Moreover, the effect of variants on three-dimensional structure and stability of protein was analyzed by bioinformatics. RESULTS: Among 6 patients there were 4 males and 2 females, and the age of consultation varied from 7 months to 18 years. All cases had varying degrees of motor developmental delay since childhood, and 4 of them had gait abnormalities or fell easily. In addition, 2 children were accompanied by delayed mental development, epilepsy and abnormal eye development. Genetic tests showed that all 6 cases had heterozygous de novo variations of KIF1A gene, including 4 missense mutations c.296C>T (p.T99M), c.761G>A (p.R254Q), c.326G>T (p.G109V), c.745C>G (p.L249V) and one splicing mutation c.798+1G>A, among which the last three variants have not been previously reported. Bioinformatics analysis showed that G109V and L249V may impair their interaction with the neighboring amino acid residues, thereby impacting protein function and reducing protein stability, and were assessed as "likely pathogenic". Meanwhile, c.798+1G>A may damage an alpha helix in the motor domain of the KIF1A protein, and was assessed as "likely pathogenic". CONCLUSIONS: KIF1A-associated neurological diseases are clinically heterogeneous, with motor developmental delay and abnormal gait often being the most common clinical features. The clinical symptoms in T99M carriers are more severe, while those in R254Q carriers are relatively mild.


Assuntos
Epilepsia , Transtornos do Neurodesenvolvimento , Masculino , Feminino , Humanos , Criança , Estudos Retrospectivos , China , Mutação , Epilepsia/genética , Transtornos do Neurodesenvolvimento/genética , Cinesinas/genética
5.
Pak J Pharm Sci ; 36(1): 205-210, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36967513

RESUMO

This work aimed to clarify the potential regulating effects of Qufeng Xuanfei formula (QFXF) on airway neurogenic inflammation and its underlying target signal pathway. Guinea pig model of airway hyperergy (AHR) was used. The relative susceptibility of major proteins to airway neurogenic inflammation was assessed using Western blot immunoassay followed by being separated by SDS-PAGE. Compared to the model group, QFXF of all concentrations effectively depressed the capsaicin enhanced cough in guinea pigs and the peak values of airway resistance significantly decreased. The results illustrated that QFXF alleviated cough symptom in guinea pigs and reduced airway neurogenic inflammation when compared to AHR model group. Airway inflammation and damage, as well as the levels of NGF, SP and c-Fos in QFXF decreased the most in the high-dose group. The mechanism of antitussive activity may be associated with reducing airway inflammation. QFXF displayed effect on chronic cough through reducing the levels of neuropeptides, attenuating airway inflammation and promoting recovery from disease to decrease the airway neuro sensitivity, suggesting that the potential mechanism may be related to Ras/ERK/c-Fos pathway.


Assuntos
Tosse , Inflamação Neurogênica , Cobaias , Animais , Tosse/tratamento farmacológico , Inflamação Neurogênica/metabolismo , Pulmão , Inflamação/metabolismo
6.
Neurogenetics ; 23(1): 11-17, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34716526

RESUMO

The target of EGR1 protein 1 (TOE1) is a 3-exonuclease belonging to the Asp-Glu-Asp-Asp deadenylase family that plays a vital role in the maturation of a variety of small nuclear RNAs (snRNAs). Bi-allelic variants in TOE1 have been reported to cause a rare and severe neurodegenerative syndrome, pontocerebellar hypoplasia type 7 (PCH7) (OMIM # 614,969), which is characterized by progressive neurodegeneration, developmental delay, and ambiguous genitalia. Here, we describe the case of a 5-year-6-month-old female Chinese patient who presented with cerebral dysplasia, moderate intellectual disability, developmental delay, and dystonia. Trio whole-exome sequencing revealed two previously unreported heterozygous variants of TOE1 in the patient, including a maternal inherited splicing variant c.237-2A > G and a de novo missense variant c.551G > T, p.Arg184Leu. TA clone sequencing showed trans status of the two variants, indicating the missense variant occurred on the paternal strand in the patient. Clinical features of the patient were mostly concordant with previous reports but brain deformities (enlarged lateral ventricle and deepened cerebellum sulcus without microcephaly and reduced cerebellar volume) were less severe than in typical PCH7 patients. Moreover, the patient had no gonadal malformation, which is common and variable in patients with PCH7. In summary, we report the case of a Chinese patient with atypical PCH7 caused by a novel TOE1 compound variant. Our work suggests that variations in the TOE1 gene can lead to highly variable clinical phenotypes.


Assuntos
Doenças Cerebelares , Microcefalia , Doenças Cerebelares/genética , Pré-Escolar , Feminino , Humanos , Microcefalia/genética , Proteínas Nucleares/genética , Fenótipo , Sequenciamento do Exoma
7.
Analyst ; 147(3): 423-429, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35040448

RESUMO

Nanozymes are a kind of nanomaterial with enzymatic activity, and have attracted wide attention in signal probe fields owing to their good catalytic activity and stability. Herein, we designed gold@platinum nanorods (Au@Pt) with enhanced oxidase-like activity as signal probes to construct lateral flow biosensors (LFBs) for the detection of hepatitis B virus DNA (HBV-DNA). The enhanced oxidase-like activity of Au@Pt nanorods can effectively catalyze the oxidation of 3,3',5,5'-tetramethylenebenzidine (TMB) to a blue substrate in the absence of hydrogen peroxide (H2O2). Based on this principle, LFBs using Au@Pt nanorods as signal probes can provide an effective signal amplification strategy and prevent biomolecules from being affected by H2O2. Under optimal conditions, LFBs have a good linear relationship between 0.1 nM and 50 nM, and the calculated detection limit was 8.5 pM. The technological strategy in the detection and quantification of HBV-DNA in this work may be helpful to achieve a rapid and accurate diagnosis of early HBV-DNA and provide new ideas for the development of point-of-care testing.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanotubos , DNA , Ouro , Vírus da Hepatite B/genética , Peróxido de Hidrogênio , Platina
8.
BMC Endocr Disord ; 22(1): 70, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296306

RESUMO

BACKGROUND: The GNAS gene on chromosome 20q13.3, encodes the alpha-subunit of the stimulatory G protein, which is expressed in most tissues and regulated through reciprocal genomic imprinting. Disorders of GNAS inactivation produce several different clinical phenotypes including pseudohypoparathyroidism (PHP), pseudopseudohypoparathyroidism (PPHP), progressive osseous heteroplasia (POH), and osteoma cutis (OC). The clinical and biochemical characteristics overlap of PHP subtypes and other related disorders presents challenges for differential diagnosis. METHODS: We enrolled a total of 11 Chinese children with PHP in our study and analyzed their clinical characteristics, laboratory results, and genetic mutations. RESULTS: Among these 11 patients, nine of them (9/11) presented with resistance to parathyroid hormone (PTH); and nine (9/11) presented with an Albright's hereditary osteodystrophy (AHO) phenotype. GNAS abnormalities were detected in all 11 patients, including nine cases with GNAS gene variations and two cases with GNAS methylation defects. These GNAS variations included an intronic mutation (c.212 + 3_212 + 6delAAGT), three missense mutations (c.314C > T, c.308 T > C, c.1123G > T), two deletion mutations (c.565_568delGACT*2, c.74delA), and two splicing mutations (c.721 + 1G > A, c.432 + 1G > A). Three of these mutations, namely, c.314C > T, c.1123G > T, and c.721 + 1G > A, were found to be novel. This data was then used to assign a GNAS subtype to each of these patients with six cases diagnosed as PHP1a, two cases as PHP1b, one as PPHP, and two as POH. CONCLUSIONS: Evaluating patients with PTH resistance and AHO phenotype improved the genetic diagnosis of GNAS mutations significantly. In addition, our results suggest that when GNAS gene sequencing is negative, GNAS methylation study should be performed. Early genetic detection is required for the differential diagnosis of GNAS disorders and is critical to the clinician's ability to distinguish between heterotopic ossification in the POH and AHO phenotype.


Assuntos
Doenças Ósseas Metabólicas , Cromograninas/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Ossificação Heterotópica , Pseudo-Hipoparatireoidismo , Dermatopatias Genéticas , Adolescente , Doenças Ósseas Metabólicas/diagnóstico , Doenças Ósseas Metabólicas/genética , Doenças Ósseas Metabólicas/patologia , Criança , Pré-Escolar , China , Feminino , Humanos , Lactente , Masculino , Ossificação Heterotópica/diagnóstico , Ossificação Heterotópica/genética , Ossificação Heterotópica/patologia , Pseudo-Hipoparatireoidismo/diagnóstico , Pseudo-Hipoparatireoidismo/genética , Pseudo-Hipoparatireoidismo/patologia , Pseudopseudo-Hipoparatireoidismo/diagnóstico , Pseudopseudo-Hipoparatireoidismo/genética , Pseudopseudo-Hipoparatireoidismo/patologia , Dermatopatias Genéticas/diagnóstico , Dermatopatias Genéticas/genética , Dermatopatias Genéticas/patologia
9.
Nucleic Acids Res ; 48(6): 3014-3028, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31980815

RESUMO

The NEIL3 DNA glycosylase is a base excision repair enzyme that excises bulky base lesions from DNA. Although NEIL3 has been shown to unhook interstrand crosslinks (ICL) in Xenopus extracts, how NEIL3 participants in ICL repair in human cells and its corporation with the canonical Fanconi anemia (FA)/BRCA pathway remain unclear. Here we show that the NEIL3 and the FA/BRCA pathways are non-epistatic in psoralen-ICL repair. The NEIL3 pathway is the major pathway for repairing psoralen-ICL, and the FA/BRCA pathway is only activated when NEIL3 is not present. Mechanistically, NEIL3 is recruited to psoralen-ICL in a rapid, PARP-dependent manner. Importantly, the NEIL3 pathway repairs psoralen-ICLs without generating double-strand breaks (DSBs), unlike the FA/BRCA pathway. In addition, we found that the RUVBL1/2 complex physically interact with NEIL3 and function within the NEIL3 pathway in psoralen-ICL repair. Moreover, TRAIP is important for the recruitment of NEIL3 but not FANCD2, and knockdown of TRAIP promotes FA/BRCA pathway activation. Interestingly, TRAIP is non-epistatic with both NEIL3 and FA pathways in psoralen-ICL repair, suggesting that TRAIP may function upstream of the two pathways. Taken together, the NEIL3 pathway is the major pathway to repair psoralen-ICL through a unique DSB-free mechanism in human cells.


Assuntos
Replicação do DNA/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , N-Glicosil Hidrolases/genética , Ubiquitina-Proteína Ligases/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Animais , Proteínas de Transporte/genética , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Dano ao DNA/genética , DNA Helicases/genética , Reparo do DNA/genética , Replicação do DNA/efeitos dos fármacos , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Fibroblastos/metabolismo , Ficusina/farmacologia , Células HeLa , Humanos , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Xenopus/genética
10.
Acta Biochim Biophys Sin (Shanghai) ; 54(6): 847-857, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35593466

RESUMO

Although hematopoietic stem cells (HSCs) in the bone marrow are in a state of quiescence, they harbor the self-renewal capacity and the pluripotency to differentiate into mature blood cells when needed, which is key to maintain hematopoietic homeostasis. Importantly, HSCs are characterized by their long lifespan ( e. g., up to 60 months for mice), display characteristics of aging, and are vulnerable to various endogenous and exogenous genotoxic stresses. Generally, DNA damage in HSCs is endogenous, which is typically induced by reactive oxygen species (ROS), aldehydes, and replication stress. Mammalian cells have evolved a complex and efficient DNA repair system to cope with various DNA lesions to maintain genomic stability. The repair machinery for DNA damage in HSCs has its own characteristics. For instance, the Fanconi anemia (FA)/BRCA pathway is particularly important for the hematopoietic system, as it can limit the damage caused by DNA inter-strand crosslinks, oxidative stress, and replication stress to HSCs to prevent FA occurrence. In addition, HSCs prefer to utilize the classical non-homologous end-joining pathway, which is essential for the V(D)J rearrangement in developing lymphocytes and is involved in double-strand break repair to maintain genomic stability in the long-term quiescent state. In contrast, the base excision repair pathway is less involved in the hematopoietic system. In this review, we summarize the impact of various types of DNA damage on HSC function and review our knowledge of the corresponding repair mechanisms and related human genetic diseases.


Assuntos
Dano ao DNA , Anemia de Fanconi , Aldeídos/metabolismo , Animais , DNA/metabolismo , Reparo do DNA , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patologia , Instabilidade Genômica , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Camundongos , Espécies Reativas de Oxigênio/metabolismo
11.
Zhongguo Zhong Yao Za Zhi ; 47(13): 3526-3529, 2022 Jul.
Artigo em Zh | MEDLINE | ID: mdl-35850805

RESUMO

One new phenylethanoid glycoside was isolated from the ethyl acetate fraction of the 75% EtOH extract of Forsythiae Fructus by various column chromatographies(HP20, silica gel, ODS) and preparative HPLC.Its structure was identified as forsythiayanoside E(1) by physicochemical properties and extensive spectroscopic analysis(HR-ESI-MS, 1 D and 2 D NMR).Compound 1 was evaluated for cytotoxic activities by MTT assay and showed weak cytotoxic activity against MCF-7 and A-375 cell lines with inhibition rates of 39.85% and 43.38% at 40 µmol·L~(-1), and no cytotoxic activity against PC-3 and HepG2 cell lines at 100 µmol·L~(-1).


Assuntos
Glicosídeos Cardíacos , Glicosídeos , Glicosídeos Cardíacos/análise , Cromatografia Líquida de Alta Pressão , Frutas/química , Glicosídeos/análise , Glicosídeos/farmacologia , Estrutura Molecular , Extratos Vegetais/química
12.
Zhongguo Zhong Yao Za Zhi ; 47(16): 4391-4394, 2022 Aug.
Artigo em Zh | MEDLINE | ID: mdl-36046867

RESUMO

One new cyclopeptide was isolated from the ethyl acetate fraction of the 75% EtOH extract of Selaginella tamariscina by various column chromatography methods(HP-20, polyamide and semi-preparative HPLC). Its structure was identified as selapeptin A(1) by extensive spectroscopic analysis(HR-ESI-MS, 1 D and 2 D NMR). Compound 1 was evaluated for cytotoxic activities by MTT assay. It showed potent cytotoxic activity against B16 F10 with the inhibition rate of 51.57%±4.34% at 40 µmol·L~(-1) while had no impacts on MDA-MB-231 and MDA-MB-468 at 100 µmol·L~(-1).


Assuntos
Selaginellaceae , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Peptídeos Cíclicos/farmacologia , Selaginellaceae/química
13.
Zhongguo Zhong Yao Za Zhi ; 47(22): 6005-6019, 2022 Nov.
Artigo em Zh | MEDLINE | ID: mdl-36471951

RESUMO

Patrinia villosa, regarding its functions in clearing heat and detoxification and eliminating carbuncles and pus, is widely used as a traditional medicinal herb that contains rich nutrition and substances such as various amino acids, vitamins, and soluble su-gar, and it is also an edible wild herb in Chinese folk tradition for 2 000 years. In 1973, Japanese scholars firstly separated three iridoids from Japanese P. villosa, and by 2021, chemical components such as flavonoids, iridoids, organic acids, triterpenoids, phenylpropanoids, and steroids have been found, which have multiple pharmacological effects, including antioxidant, antitumor, anti-diarrhea, antibacterial, sedative, and liver protection capabilities. Studies indicate that flavonoids, saponins, phenylpropanoids, and triterpenoids in P. villosa are vital substances for its pharmacological activities. However, the quality of this medicinal material cannot be controlled due to the unclear records in ancient books in the past dynasties and different drug use habits in different places, and thus its circulation is chaotic. At present, researchers have used flavonoids, organic acids, phenylpropanoids, triterpenoid saponins, and other compounds to conduct studies in this regard. Therefore, on the basis of the existing literature resources, we comprehensively summarize the chemical constituents, pharmacological activities, and quality control of P. villosa to further provide a reference for the safety and effectiveness of clinical drug use and lay a foundation for the follow-up experimental research.


Assuntos
Patrinia , Saponinas , Triterpenos , Patrinia/química , Flavonoides/farmacologia , Triterpenos/farmacologia , Iridoides , Controle de Qualidade
14.
Clin Nephrol ; 96(4): 243-250, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34308837

RESUMO

The retinitis pigmentosa -GTPase regulator interacting protein 1-like gene (RPGRIP1L) encodes a ciliary protein essential for basic embryonic development. Biallelic variants of RPGRIP1L; cause Joubert syndrome (JS) with renal defects. In addition to characteristic JS features (cerebellar and brain stem malformations, developmental delays, hypotonia, irregular breathing patterns, eye movement abnormalities, ataxia, and intellectual disability), affected individuals typically also exhibit renal disorders, such as cystic kidney disease and nephronophthisis. Here, we describe a 10-year-old female of Chinese descent who was referred to hospital due to lower limb arthralgia. However, the presence of short stature, facial deformities, renal abnormalities, and renal failure suggested a diagnosis of congenital syndrome disorder. Whole-exome sequencing (WES) revealed that the patient was homozygous for a previously unreported RPGRIP1L variant featuring a missense mutation (NM_015272; c.2180G>A, p.Gly727Asp). A subsequent cranial MRI confirmed the presence of midbrain molar tooth sign and cerebellar Dandy-Walker malformation. However, no significant developmental delays or neurological abnormalities were noted. This study makes a significant contribution to the literature by expanding knowledge of the JS-causing RPGRIP1L variant spectrum, enhancing understanding of RPGRIP1L variant-associated JS phenotypes.


Assuntos
Anormalidades Múltiplas , Anormalidades do Olho , Doenças Renais Císticas , Anormalidades Múltiplas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Cerebelo/anormalidades , Cerebelo/diagnóstico por imagem , Criança , China , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/genética , Feminino , Humanos , Doenças Renais Císticas/diagnóstico , Doenças Renais Císticas/genética , Mutação de Sentido Incorreto , Retina/anormalidades
15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(2): 112-116, 2021 Feb 10.
Artigo em Zh | MEDLINE | ID: mdl-33565060

RESUMO

OBJECTIVE: To explore the genetic basis for 7 patients with Alström syndrome. METHODS: DNA was extracted from peripheral blood samples of the patients and their parents. Whole exome sequencing was carried out for the patients. Suspected variant was verified by Sanger sequencing and bioinformatic analysis. RESULTS: Genetic testing revealed 12 variants of the ALMS1 gene among the 7 patients, including 7 nonsense and 5 frameshift variants, which included c.5418delC (p.Tyr1807Thrfs*23), c.10549C>T (p.Gln3517*), c.9145dupC (p.Thr3049Asnfs*12), c.10819C>T (p.Arg3607*), c.5701_5704delGAGA (p.Glu1901Argfs*18), c.9154_9155delCT (p.Cys3053Serfs*9), c.9460delG (p.Val3154*), c.9379C>T (p.Gln3127*), c.12115C>T (p.Gln4039*), c.1468dupA (p.Thr490Asnfs*15), c.10825C>T (p.Arg3609*) and c.3902C>A (p.Ser1301*). Among these, c.9154_ 9155delCT, c.9460delG, c.9379C>T, and c.1468dupA were unreported previously. Based on the standards and guidelines of American College of Medical Genetics and Genomics, the c.9379C>T and c.12115C>T variants of the ALMS1 gene were predicted to be likely pathogenic (PVS1+PM2), whilst the other 10 variants were predicted to be pathogenic (PVS1+ PM2+ PP3+PP4). CONCLUSION: ALMS1 variants probably underlay the Alström syndrome in the 7 patients, and genetic testing can provide a basis for the clinical diagnosis of this syndrome. The discovery of four novel variants has expanded the mutational spectrum of Alström syndrome.


Assuntos
Síndrome de Alstrom , Proteínas de Ciclo Celular/genética , Síndrome de Alstrom/genética , Humanos , Mutação , Linhagem , Sequenciamento do Exoma
16.
Clin Immunol ; 214: 108387, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32194234

RESUMO

Biallelic variants in BLNK cause primary B-cell immunodeficiency that usually results in absence of B cells and immunoglobulin. Here, we identified disease-causing variant(s) in two unrelated Chinese patients with agammaglobulinemia. Patient 1 showed a moderate reduction in total B-cell count but demonstrated both extremely low levels of memory B-cells and lower levels of memory T cells relative to those in healthy controls. Whole-exome sequencing (WES) revealed a novel heterozygous splice variant (c.676+1G>A), and suggested exon 9 deletion from BLNK, which was subsequently validated by quantitative polymerase chain reaction. For Patient 2, WES revealed novel compound heterozygous of a frameshift variant (p.T152Pfs*6) and a synonymous variant (c.525G>A) that resulted in exon 6 skipping, according to cDNA sequencing. These findings represent the first report of a BLNK-deficient patient presenting with impaired memory B-cell and memory T-cell development. Furthermore, this study is the first reporting a pathogenic synonymous splice variant in BLNK.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Agamaglobulinemia/genética , Linfócitos B/patologia , Agamaglobulinemia/etnologia , Povo Asiático/genética , Criança , Pré-Escolar , Epilepsia/complicações , Éxons/genética , Feminino , Mutação da Fase de Leitura , Heterozigoto , Humanos , Memória Imunológica , Contagem de Linfócitos , Masculino , Linhagem , Isoformas de Proteínas/genética , Recidiva , Infecções Respiratórias/complicações , Deleção de Sequência , Subpopulações de Linfócitos T/patologia , Sequenciamento do Exoma
17.
BMC Med Genet ; 21(1): 215, 2020 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-33129256

RESUMO

BACKGROUND: SHORT syndrome is a rare genetic disease named with the acronyms of short stature, hyper-extensibility of joints, ocular depression, Rieger anomaly and teething delay. It is inherited in an autosomal dominant manner confirmed by the identification of heterozygous mutations in PIK3R1. This study hereby presents a 15-year-old female with intrauterine growth restriction, short stature, teething delay, characteristic facial gestalts who was identified a novel de novo nonsense mutation in PIK3R1. CASE PRESENTATION: The proband was admitted to our department due to irregular menstrual cycle and hirsutism with short stature, who had a history of intrauterine growth restriction and presented with short stature, teething delay, characteristic facial gestalts, hirsutism, and thyroid disease. Whole-exome sequencing and Sanger sequencing revealed c.1960C > T, a novel de novo nonsense mutation, leading to the termination of protein translation (p. Gln654*). CONCLUSIONS: This is the first case report of SHORT syndrome complicated with thyroid disease in China, identifying a novel de novo heterozygous nonsense mutation in PIK3R1 gene (p. Gln654*). The phenotypes are mildly different from other cases previously described in the literature, in which our patient presents with lipoatrophy, facial feature, and first reported thyroid disease. Thyroid disease may be a new clinical symptom of patients with SHORT syndrome.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/genética , Códon sem Sentido , Transtornos do Crescimento/genética , Hipercalcemia/genética , Doenças Metabólicas/genética , Nefrocalcinose/genética , Doenças da Glândula Tireoide/genética , Adolescente , Povo Asiático , Sequência de Bases , Classe Ia de Fosfatidilinositol 3-Quinase/deficiência , Feminino , Expressão Gênica , Genes Dominantes , Transtornos do Crescimento/complicações , Transtornos do Crescimento/etnologia , Transtornos do Crescimento/patologia , Heterozigoto , Humanos , Hipercalcemia/complicações , Hipercalcemia/etnologia , Hipercalcemia/patologia , Doenças Metabólicas/complicações , Doenças Metabólicas/etnologia , Doenças Metabólicas/patologia , Modelos Moleculares , Nefrocalcinose/complicações , Nefrocalcinose/etnologia , Nefrocalcinose/patologia , Fenótipo , Estrutura Secundária de Proteína , Doenças da Glândula Tireoide/complicações , Doenças da Glândula Tireoide/etnologia , Doenças da Glândula Tireoide/patologia , Sequenciamento do Exoma
18.
Am J Med Genet A ; 182(4): 640-651, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31883305

RESUMO

Kabuki syndrome (KS) is a rare disorder of transcriptional regulation with a complex phenotype that includes cranio-facial dysmorphism, intellectual disability, hypotonia, failure to thrive, short stature, and cardiac and renal anomalies. Heterozygous, de novo dominant mutations in either KMT2D or KDM6A underlie KS. Limited information is available about the phenotypic spectrum of KS in China. Fourteen Chinese patients with genetically confirmed KS were evaluated in addition to 11 Chinese patients who were identified from the medical literature. The clinical phenotype spectrum of these patients was compared to that of 449 patients with KS from non-Chinese ethnicities. Additionally, we explored the utility of a facial recognition software in recognizing KS. All 25 patients with KS carried de novo, likely pathogenic or pathogenic variants in either KMT2D or KDM6A. Eighteen patients were male, the age at diagnosis ranged from 2months to 11.6 years. The facial gestalt included arched and broad eyebrows (25/25; 100%), sparse lateral or notched eyebrows (18/18; 100%), short columella with a concave nasal tip (24/25; 96%) and large, prominent ears (24/24; 100%) which were more frequent in Chinese patients (p < .01). In contrast, microcephaly (2/25; 8%), cleft lip/palate (2/25; 8%), and cardiac defects (10/25; 40%) were less frequent in Chinese patients (not significant). The diagnosis of KS was correctly identified in 13 of 14 patients through facial recognition and clinical phenotyping, underscoring the utility of this approach. As expected, there is marked phenotypic overlap between Chinese and non-Chinese patients with KS, although subtle differences were identified.


Assuntos
Anormalidades Múltiplas/patologia , Povo Asiático/genética , Proteínas de Ligação a DNA/genética , Face/anormalidades , Doenças Hematológicas/patologia , Histona Desmetilases/genética , Mutação , Proteínas de Neoplasias/genética , Doenças Vestibulares/patologia , Anormalidades Múltiplas/genética , Criança , Pré-Escolar , Face/patologia , Feminino , Doenças Hematológicas/genética , Humanos , Lactente , Masculino , Fenótipo , Doenças Vestibulares/genética
19.
Paediatr Respir Rev ; 33: 24-27, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31734186

RESUMO

A laryngotracheoesophageal cleft (LC) is a rare congenital anomaly of the upper aerodigestive tract resulting from the absence of fusion of the posterior cricoid lamina, which affects an abnormal communication between the larynx, trachea and esophagus. The genetic etiology of LC remains elusive. The involvement of genetic factors in the development of LC is suggested by reports of familial occurrence, and the increased prevalence of component features among first-degree relatives of affected individuals and murine knockout models. No consistent pattern of inheritance has been found in nonsyndromic patients, except for cases associated with described syndromes. Once the syndrome related to the laryngeal cleft is considered, an active search for the cleft must be initiated. The genetic evaluation of patients with LCs should be guided by the type and location of the malformation, specific medical history and a detailed physical examination. The application of genetic approaches, such as microarrays and exome sequencing might lead to elucidating the etiology of LCs.


Assuntos
Canal Anal/anormalidades , Artrogripose/genética , Síndrome CHARGE/genética , Anormalidades Congênitas/genética , Anormalidades Craniofaciais/genética , Síndrome de DiGeorge/genética , Otopatias/genética , Orelha/anormalidades , Esôfago/anormalidades , Cardiopatias Congênitas/genética , Hipertelorismo/genética , Hipopituitarismo/genética , Hipospadia/genética , Deficiência Intelectual/genética , Rim/anormalidades , Laringe/anormalidades , Deformidades Congênitas dos Membros/genética , Síndrome de Pallister-Hall/genética , Coluna Vertebral/anormalidades , Traqueia/anormalidades , Anormalidades Congênitas/diagnóstico , Humanos
20.
Clin Genet ; 96(4): 290-299, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31219622

RESUMO

Noonan syndrome (NS) is a common autosomal dominant/recessive disorder. No large-scale study has been conducted on NS in China, which is the most populous country in the world. Next-generation sequencing (NGS) was used to identify pathogenic variants in patients that exhibited NS-related phenotypes. We assessed the facial features and clinical manifestations of patients with pathogenic or likely pathogenic variants in the RAS-MAPK signaling pathway. Gene-related Chinese NS facial features were described using artificial intelligence (AI).NGS identified pathogenic variants in 103 Chinese patients in eight NS-related genes: PTPN11 (48.5%), SOS1 (12.6%), SHOC2 (11.7%), KRAS (9.71%), RAF1 (7.77%), RIT1 (6.8%), CBL (0.97%), NRAS (0.97%), and LZTR1 (0.97%). Gene-related facial representations showed that each gene was associated with different facial details. Eight novel pathogenic variants were detected and clinical features because of specific genetic variants were reported, including hearing loss, cancer risk due to a PTPN11 pathogenic variant, and ubiquitous abnormal intracranial structure due to SHOC2 pathogenic variants. NGS facilitates the diagnosis of NS, especially for patients with mild/moderate and atypical symptoms. Our study describes the genotypic and phenotypic spectra of NS in China, providing new insights into distinctive clinical features due to specific pathogenic variants.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Síndrome de Noonan/diagnóstico , Síndrome de Noonan/genética , Adolescente , Alelos , Criança , Pré-Escolar , China , Fácies , Feminino , Estudos de Associação Genética/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Masculino , Fenótipo , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA