Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
World J Gastrointest Oncol ; 16(7): 3118-3157, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39072171

RESUMO

BACKGROUND: In the quest to manage hepatocellular carcinoma (HCC), the focus has shifted to a more holistic approach encompassing both data analytics and innovative treatments. Analyzing rich data resources, such as the cancer genome atlas (TCGA), and examining progressive therapies can potentially reshape the trajectory of HCC treatment. AIM: To elucidate the immunological genes and the underlying mechanism of the combined Kombo knife and sorafenib regimen for HCC by analyzing data from TCGA and machine learning data. METHODS: Immune attributes were evaluated via TCGA's postablation HCC RNA sequencing data. Using weighted gene coexpression network analysis and machine learning, we identified genes with high prognostic value. The therapeutic landscape and safety metrics of the integrated treatment were critically evaluated across cellular and animal models. RESULTS: Immune genes-specifically, peptidylprolyl isomerase A and solute carrier family 29 member 3-emerged as significant prognostic markers. Enhanced therapeutic outcomes, such as prolonged progression-free survival and an elevated overall response rate, characterize the combined approach, with peripheral blood mononuclear cells displaying potent effects on HCC dynamics. CONCLUSION: The combination of Kombo knife with sorafenib is an innovative HCC treatment modality anchored in immune-centric strategies.

2.
mSystems ; 9(4): e0105523, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38501864

RESUMO

Plant-associated diazotrophs strongly relate to plant nitrogen (N) supply and growth. However, our knowledge of diazotrophic community assembly and microbial N metabolism in plant microbiomes is largely limited. Here we examined the assembly and temporal dynamics of diazotrophic communities across multiple compartments (soils, epiphytic and endophytic niches of root and leaf, and grain) of three cereal crops (maize, wheat, and barley) and identified the potential N-cycling pathways in phylloplane microbiomes. Our results demonstrated that the microbial species pool, influenced by site-specific environmental factors (e.g., edaphic factors), had a stronger effect than host selection (i.e., plant species and developmental stage) in shaping diazotrophic communities across the soil-plant continuum. Crop diazotrophic communities were dominated by a few taxa (~0.7% of diazotrophic phylotypes) which were mainly affiliated with Methylobacterium, Azospirillum, Bradyrhizobium, and Rhizobium. Furthermore, eight dominant taxa belonging to Azospirillum and Methylobacterium were identified as keystone diazotrophic taxa for three crops and were potentially associated with microbial network stability and crop yields. Metagenomic binning recovered 58 metagenome-assembled genomes (MAGs) from the phylloplane, and the majority of them were identified as novel species (37 MAGs) and harbored genes potentially related to multiple N metabolism processes (e.g., nitrate reduction). Notably, for the first time, a high-quality MAG harboring genes involved in the complete denitrification process was recovered in the phylloplane and showed high identity to Pseudomonas mendocina. Overall, these findings significantly expand our understanding of ecological drivers of crop diazotrophs and provide new insights into the potential microbial N metabolism in the phyllosphere.IMPORTANCEPlants harbor diverse nitrogen-fixing microorganisms (i.e., diazotrophic communities) in both belowground and aboveground tissues, which play a vital role in plant nitrogen supply and growth promotion. Understanding the assembly and temporal dynamics of crop diazotrophic communities is a prerequisite for harnessing them to promote plant growth. In this study, we show that the site-specific microbial species pool largely shapes the structure of diazotrophic communities in the leaves and roots of three cereal crops. We further identify keystone diazotrophic taxa in crop microbiomes and characterize potential microbial N metabolism pathways in the phyllosphere, which provides essential information for developing microbiome-based tools in future sustainable agricultural production.


Assuntos
Microbiota , Microbiota/genética , Agricultura , Solo/química , Nitrogênio/análise , Produtos Agrícolas/metabolismo , Desenvolvimento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA