Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proteome Sci ; 21(1): 21, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993861

RESUMO

Osteoarthritis (OA) is the second-commonest arthritis, but pathogenic and regulatory mechanisms underlying OA remain incompletely understood. Here, we aimed to identify the mechanisms associated with microRNA-1 (miR-1) treatment of OA in rodent OA models using a proteomic approach. First, N = 18 Sprague Dawley (SD) rats underwent sham surgery (n = 6) or ACL transection (n = 12), followed at an interval of one week by randomization of the ACL transection group to intra-articular administration of either 50 µL placebo (control group) or miR-1 agomir, a mimic of endogenous miR-1 (experimental group). After allowing for eight weeks of remodeling, articular cartilage tissue was harvested and immunohistochemically stained for the presence of MMP-13. Second, N = 30 Col2a1-cre-ERT2 /GFPf1/fl -RFP-miR-1 transgenic mice were randomized to intra-articular administration of either placebo (control group, N = 15) or tamoxifen, an inducer of miR-1 expression (experimental group, N = 15), before undergoing surgical disruption of the medial meniscus (DMM) after an interval of five days. After allowing for eight weeks of remodeling, articular cartilage tissue was harvested and underwent differential proteomic analysis. Specifically, tandem mass tagging (TMT) quantitative proteomic analysis was employed to identify inter-group differentially-expressed proteins (DEP), and selected DEPs were validated using real-time quantitative polymerase chain reaction (RT-qPCR) technology. Immunohistochemically-detected MMP-13 expression was significantly lower in the experimental rat group, and proteomic analyses of mouse tissue homogenate demonstrated that of 3526 identified proteins, 345 were differentially expressed (relative up- and down-regulation) in the experimental group. Proteins Fn1, P4ha1, P4ha2, Acan, F2, Col3a1, Fga, Rps29, Rpl34, and Fgg were the *top ten most-connected proteins, implying that miR-1 may regulate an expression network involving these proteins. Of these ten proteins, three were selected for further validation by RT-qPCR: the transcript of Fn1, known to be associated with OA, exhibited relative upregulation in the experimental group, whereas the transcripts of P4ha1 and Acan exhibited relative downregulation. These proteins may thus represent key miR-1 targets during OA-regulatory mechanisms, and may provide additional insights regarding therapeutic mechanisms of miR-1 in context of OA.

2.
Small ; 18(31): e2202911, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35810467

RESUMO

Solid-state lithium metal batteries (SSLMBs) promise high energy density and high safety by employing high-capacity Li metal anode and solid-state electrolytes. However, the construction of the composite Li metal electrode is a neglected but important subject when the extensive research focuses on the interface between the solid electrolyte Li6.4 La3 Zr1.4 Ta0.6 O12 and Li metal anode. Here, an electronic-ionic conducting composite Li metal anode consisting of Li-Al alloy and LiF is constructed to achieve the stable electronic-ionic transport channel and the intimate interface contact, which can realize the uniform Li deposition and the efficiency utilization of lithium in composite Li metal electrode. Therefore, the symmetric battery with composite Li metal electrode exhibits the high critical current density with 1.2 mA cm-2 and stable cycle for 1500 h at 0.3 mA cm-2 , 25 °C. Moreover, the SSLMBs matched with LiFePO4 and LiNi0.8 Co0.1 Mn0.1 O2 achieve the outstanding electrochemical performance, verifying the feasibility of composite Li metal electrode in various SSLMBs systems.

3.
Phys Chem Chem Phys ; 24(15): 9018-9028, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35381056

RESUMO

Aptamers have been widely used in the detection, diagnosis, and treatment of cancer. Owing to their special binding affinity toward cancer-related biomarkers, aptamers can be used for targeted drug delivery or bio-sensing/bio-imaging in various scenarios. The interfacial properties of aptamers play important roles in controlling the surface charge, recognition efficiency, and binding affinity of drug-delivering lipid-based carriers. In this research, the interfacial behaviors, such as surface orientation, molecular conformation, and adsorption kinetics of conjugated AS1411 molecules at different cationic lipid bilayer interfaces were investigated by sum frequency generation vibrational spectroscopy (SFG-VS) in situ and in real-time. It is shown that the conjugated AS1411 molecules at the DMTAP bilayer interface show a higher binding affinity but with slower binding kinetics compared to the DMDAP bilayer interface. The analysis results also reveal that the thymine residues of cholesteryl conjugated AS1411 molecules show higher conformational ordering compared to the thymine residues of the alkyl chain conjugated AS1411 molecules. These understandings provide unique molecular insight into the aptamer-lipid membrane interactions, which may help researchers to improve the efficiency and safety of aptamer-related drug delivery systems.


Assuntos
Aptâmeros de Nucleotídeos , Bicamadas Lipídicas , Aptâmeros de Nucleotídeos/química , Conformação Molecular , Oligodesoxirribonucleotídeos/química , Timina
4.
Angew Chem Int Ed Engl ; 60(22): 12597-12606, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33763930

RESUMO

The efficient synthesis of long, branched, and complex carbohydrates containing multiple 1,2-cis glycosidic linkages is a long-standing challenge. Here, we report a merging reagent modulation and 6-O-levulinoyl remote anchimeric assistance glycosylation strategy, which is successfully applied to the first highly stereoselective synthesis of the branched Dendrobium Huoshanense glycans and the linear Longan glycans containing up to 30 contiguous 1,2-cis glucosidic bonds. DFT calculations shed light on the origin of the much higher stereoselectivities of 1,2-cis glucosylation with 6-O-levulinoyl group than 6-O-acetyl or 6-O-benzoyl groups. Orthogonal one-pot glycosylation strategy based on glycosyl ortho-alkynylbenzoates and ortho-(1-phenylvinyl)benzoates has been demonstrated in the efficient synthesis of complex glycans, precluding such issues as aglycon transfer inherent to orthogonal one-pot synthesis based on thioglycosides.

5.
Org Biomol Chem ; 18(36): 7127-7138, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32966515

RESUMO

A copper(i)-catalyzed three-component addition-cycloisomerization difunctionalization reaction of 1,3-enyne-ACPs with Togni I reagent and TMSCN under mild reaction conditions has been developed, affording 3-trifluoroethylcyclopenta[b]naphthalene-4-carbonitrile derivatives. The reaction proceeded through a copper(i)-catalyzed 1,4-addition of conjugated 1,3-enynes via a radical relay process and aromatic cycloisomerization of allene-ACP intermediates.

6.
Chin J Traumatol ; 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-33008740

RESUMO

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.

7.
Soft Matter ; 15(22): 4445-4453, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31011740

RESUMO

The conformation and adsorption kinetics of oligonucleotides at lipid membrane interfaces are crucial to their biological functions, but are yet not clearly understood. Poly-dT oligonucleotide molecules have been widely used as primers for reverse translation of RNA molecules, as well as a surface recognition agent for mRNA purification and extraction. In this research, the adsorption processes of poly-dT25 on lipid membranes in different ionic solutions were investigated by sum frequency generation vibrational spectroscopy (SFG-VS) together with a single molecule tracking technique in situ and in real time. These systematic studies provide us with molecular insight into the chemical and physical nature of oligonucleotide-membrane interactions, and show us how the electric double layer (EDL) structure changes the conformation and adsorption kinetics of oligonucleotides. The SFG-VS results indicate that an increase of ionic concentration not only decreases the adsorption density of oligonucleotides but also changes the conformation of oligonucleotides from an elongated conformation to a coiled conformation, causing stronger thermodynamic interactions with membranes, as demonstrated by single molecule tracking techniques. It is also shown that the ionic solution can tune the balance between the surface diffusion rate and solution diffusion rate of oligonucleotides significantly. These results demonstrated that the spectra and kinetics collected by in situ label-free SFG-VS detection and the single molecular tracking technique can provide new molecular insights into the mechanisms of oligonucleotide-membrane interactions. These new understandings may help researchers to control the assembly of oligonucleotide-liposome complexes and to improve the efficiency of transportation and delivery of oligonucleotide molecules.

8.
J Recept Signal Transduct Res ; 38(3): 213-224, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29724133

RESUMO

Human Coagulation Factor IXa (FIXa), specifically inhibited at the initiation stage of the blood coagulation cascade, is an excellent target for developing selective and safe anticoagulants. To explore this inhibitory mechanism, 86 FIXa inhibitors were selected to generate pharmacophore models and subsequently SAR models. Both best pharmacophore model and ROC curve were built through the Receptor-Ligand Pharmacophore Generation module. CoMFA model based on molecular docking and PLS factor analysis methods were developed. Model propagations values are q2 = 0.709, r2 = 0.949, and r2pred = 0.905. The satisfactory q2 value of 0.609, r2 value of 0.962, and r2pred value of 0.819 for CoMSIA indicated that the CoMFA and CoMSIA models are both available to predict the inhibitory activity on FIXa. On the basis of pharmacophore modeling, molecular docking, and 3D-QSAR modeling screening, six molecules are screened as potential FIXa inhibitors.


Assuntos
Desenho de Fármacos , Fator IXa/química , Fibrinolíticos/química , Trombose/tratamento farmacológico , Coagulação Sanguínea/efeitos dos fármacos , Fator IXa/antagonistas & inibidores , Fibrinolíticos/uso terapêutico , Humanos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica/efeitos dos fármacos , Relação Quantitativa Estrutura-Atividade , Trombose/genética , Trombose/patologia
9.
Sci Rep ; 14(1): 8101, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582868

RESUMO

Our objective in this study is to determine whether intra-articular injection of miRNA-1 can attenuate the progression of OA in rats by down regulating Ihh. Knee chondrocytes were isolated from male Sprague-Dawley rats aged 2-3 days. Second-generation chondrocytes were transfected with miR-1 mimic and empty vector with lipo3000 for 6 h and then stimulated with 10 ng/mL IL-1ß for 24 h. OA-related and cartilage matrix genes were quantified using real-time quantitative polymerase chain reaction (RT-qPCR). Two-month-old male Sprague-Dawley rats were divided into three groups (n = 30?): sham operation group + 50 µL saline, anterior cruciate ligament transection (ACLT) group + 50 µL miR-1 agomir (concentration), and control group ACLT + 50 µL miR-1 agomir. Treatment was started one week after the operation. All animals were euthanized eight weeks after the operation. X-rays and micro-CT were used to detect imaging changes in the knee joints. FMT was used to monitor joint inflammation in vivo. Safranin O staining was used to detect morphological changes in articular cartilage. Immunohistochemistry was used to detect Col2, Col10, metalloproteinase-13 (MMP-13). RT-qPCR was used to detect gene changes includingmiR-1, Col2, Col10, MMP-13, Ihh, Smo, Gli1, Gli2, and Gli3. Overexpression of miR-1 in IL-1ß-stimulated chondrocytes reduced the levels of Ihh, MMP-13, and Col10 but increased the levels of Col2 and aggrecan. Intra-articular injection of miR-1 agomir reduced osteophyte formation, inflammation, and prevented cartilage damage. RT-qPCR results indicated that the miR-1 agomir increased articular cartilage anabolism and inhibited cartilage catabonism. miR-1 can attenuate the progression of OA by downregulating Ihh.


Assuntos
Cartilagem Articular , MicroRNAs , Osteoartrite , Ratos , Masculino , Animais , Proteínas Hedgehog , MicroRNAs/genética , MicroRNAs/uso terapêutico , Ratos Sprague-Dawley , Metaloproteinase 13 da Matriz/genética , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Condrócitos , Injeções Intra-Articulares , Inflamação , Modelos Animais de Doenças
10.
Medicine (Baltimore) ; 103(17): e37611, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669405

RESUMO

BACKGROUND: Osteoarthritis is a common degenerative joint disease that is highly prevalent in the elderly population. Along with the occurrence of sports injuries, osteoarthritis is gradually showing a younger trend. Osteoarthritis has many causative factors, and its pathogenesis is currently unknown. Cellular senescence is a stable form of cell cycle arrest exhibited by cells in response to external stimuli and plays a role in a variety of diseases. And it is only in the last decade or so that cellular senescence has gradually become cross-linked with osteoarthritis. However, there is no comprehensive bibliometric analysis in this field. The aim of this study is to present the current status and research hotspots of cellular senescence in the field of osteoarthritis, and to predict the future trends of cellular senescence in osteoarthritis research from a bibliometric perspective. METHODS: This study included 298 records of cellular senescence associated with osteoarthritis from 2009 to 2023, with data from the Web of Science Core Collection database. CiteSpace, Scimago Graphica software, VOSviewer, and the R package "bibliometrix" software were used to analyze regions, institutions, journals, authors, and keywords to predict recent trends in cellular senescence related to osteoarthritis research. RESULTS: The number of publications related to cellular senescence associated with osteoarthritis is increasing year by year. China and the United States contribute more than 70% of the publications and are the mainstay of research in this field. Central South University is the most active institution with the largest number of publications. International Journal of Molecular Sciences is the most popular journal in the field with the largest number of publications, while Osteoarthritis and Cartilage is the most cited journal. Loeser, Richard F. is not only the most prolific author, but also the most frequently cited author, contributing greatly to the field. CONCLUSION: In the last decade or so, this is the first bibliometric study that systematically describes the current status and development trend of research on cellular senescence associated with osteoarthritis. The study comprehensively and systematically summarizes and concludes the research hotspots and development trends, providing valuable references for researchers in this field.


Assuntos
Bibliometria , Senescência Celular , Osteoartrite , Osteoartrite/patologia , Senescência Celular/fisiologia , Humanos
11.
Org Lett ; 25(16): 2788-2792, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37058086

RESUMO

Highly stereoselective construction of 1,2-cis-Arap linkages has been achieved, which featured a broad range of alcoholic acceptors, including strong nucleophiles and complex bioactive molecules. This method was applied to a regioselective and orthogonal one-pot synthesis of a pentasaccharide, which was the structural motif of a side chain in type II arabinogalactan.

12.
Sci Rep ; 13(1): 9169, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280274

RESUMO

This study aimed to help healthy adults achieve self-screening by analyzing the quantitative relationship between body composition index measurements (BMI, waist-to-hip ratio, etc.) and dyslipidemia and establishing a logical risk prediction model for dyslipidemia. We performed a cross-sectional study and collected relevant data from 1115 adults between November 2019 and August 2020. The least absolute shrinkage selection operator (LASSO) regression analysis was performed to select the best predictor variables, and multivariate logistic regression analysis was used to construct the prediction model. In this study, a graphic tool including 10 predictor variables (a "nomogram," see the precise definition in the text) was constructed to predict the risk of dyslipidemia in healthy adults. A calibration diagram, receiver operating characteristic (ROC) curve, and decision curve analysis (DCA) were used to verify the model's utility. Our proposed dyslipidemia nomogram showed good discriminative ability with a C-index of 0.737 (95% confidence interval, 0.70-0.773). In the internal validation, a high C-index value of 0.718 was achieved. DCA showed a dyslipidemia threshold probability of 2-45%, proving the value of the nomogram for clinical application for dyslipidemia. This nomogram may be useful for self-screening the risk of dyslipidemia in healthy adults.


Assuntos
Dislipidemias , Nomogramas , Adulto , Humanos , Estudos Transversais , Composição Corporal , Calibragem , Dislipidemias/diagnóstico
13.
iScience ; 25(5): 104260, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35521525

RESUMO

Accurately evaluating the health status of lithium-ion batteries (LIBs) is significant to enhance the safety, efficiency, and economy of LIBs deployment. However, the complex degradation processes inside the battery make it a thorny challenge. Data-driven methods are widely used to resolve the problem without exploring the complex aging mechanisms; however, random and incomplete charging-discharging processes in actual applications make the existing methods fail to work. Here, we develop three data-driven methods to estimate battery state of health (SOH) using a short random charging segment (RCS). Four types of commercial LIBs (75 cells), cycled under different temperatures and discharging rates, are employed to validate the methods. Trained on a nominal cycling condition, our models can achieve high-precision SOH estimation under other different conditions. We prove that an RCS with a 10mV voltage window can obtain an average error of less than 5%, and the error plunges as the voltage window increases.

14.
Bone ; 165: 116566, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36152943

RESUMO

Endochondral bone formation from the growth plate plays a critical role in vertebrate limb development and skeletal homeostasis. Although miR-1 is mainly expressed in the hypertrophic region of the growth plate during this process, its role in the endochondral bone formation is unknown. To elucidate the role of miR-1 in cartilage development, chondrocyte-specific transgenic mice with high expression of miR-1 were generated (Col2a1-Cre-ERT2-GFPfl/fl-RFP-miR-1). Transgenic mice showed short limbs and delayed formation of secondary ossification centers. In the tibia growth plate of miR-1-overexpressing transgenic mice, the chondrocytes in the proliferative zone were disorganized and their proliferation decreased, and the ColX, MMP-13 and Indian Hedgehog (IHH) in chondrocytes showed a downward trend, resulting in decreased terminal differentiation in the hypertrophic zone. In addition, the apoptosis index caspase-3 also showed a downward trend in the tibia growth plate. It was concluded that miR-1 overexpression affects chondrocyte proliferation, hypertrophic differentiation, and apoptosis, thereby delaying the formation of secondary ossification centers and leading to short limbs. It was also verified that miR-1 affects endochondral ossification through the IHH pathway. The above results suggest that miR-1 overexpression can affect endochondral osteogenesis by inhibiting chondrocyte proliferation, hypertrophic differentiation, and apoptosis, thus causing limb hypoplasia in mice. This work gives potential for new therapeutic directions and insights for the treatment of dwarf-related diseases.


Assuntos
MicroRNAs , Osteogênese , Camundongos , Animais , Osteogênese/genética , Condrócitos/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Camundongos Transgênicos , Metaloproteinase 13 da Matriz/metabolismo , Caspase 3/metabolismo , Hipertrofia , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular
15.
Chem Sci ; 12(14): 5143-5151, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-34163751

RESUMO

Both glycans (O-glycosides) and nucleosides (N-glycosides) play important roles in numerous biological processes. Chemical synthesis is a reliable and effective means to solve the attainability issues of these essential biomolecules. However, due to the stereo- and regiochemical issues during glycan assembly, together with problems including the poor solubility and nucleophilicity of nucleobases in nucleoside synthesis, the development of one-pot glycosylation strategies toward efficient synthesis of both glycans and nucleosides remains poor and challenging. Here, we report the first orthogonal and reactivity-based one-pot glycosylation strategy suitable for both glycan and nucleoside synthesis on the basis of glycosyl ortho-(1-phenylvinyl)benzoates. This one-pot glycosylation strategy not only inherits the advantages including no aglycon transfers, no undesired interference of departing species, and no unpleasant odors associated with the previously developed orthogonal one-pot glycosylation strategy based on glycosyl ortho-alkynylbenzoates, but also highly expands the scope (glycans and nucleosides) and increases the number of leaving groups that could be employed for the multistep one-pot synthesis (up to the formation of four different glycosidic bonds). In particular, the current one-pot glycosylation strategy is successfully applied to the total synthesis of a promising tuberculosis drug lead capuramycin and the divergent and formal synthesis of TMG-chitotriomycin with potent and specific inhibition activities toward ß-N-acetylglucosaminidases and important endosymbiotic lipochitooligosaccharides including the Nod factor and the Myc factor, which represents one of the most efficient and straightforward synthetic routes toward these biologically salient molecules.

16.
Chem Commun (Camb) ; 56(41): 5457-5471, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32406444

RESUMO

The transformations of cyclopropenes have attracted the attention of organic chemists for decades. As readily accessible strained carbocycles, cyclopropenes show a diverse range of reactivities. This feature article focuses on the developments of cyclopropenes from 2016 until the end of 2019, including reactions through vinylmetal carbenes, reactions through metal complex insertion, addition reactions with 1,3-dipole, radical reactions of cyclopropenes, and reactions of highly reactive in situ generated cyclopropenes. In addition, several new synthetic methods and applications of cyclopropenes are also disclosed in this paper.

17.
Nat Commun ; 11(1): 405, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964883

RESUMO

Both of O-glycosides and nucleosides are important biomolecules with crucial rules in numerous biological processes. Chemical synthesis is an efficient and scalable method to produce well-defined and pure carbohydrate-containing molecules for deciphering their functions and developing therapeutic agents. However, the development of glycosylation methods for efficient synthesis of both O-glycosides and nucleosides is one of the long-standing challenges in chemistry. Here, we report a highly efficient and versatile glycosylation method for efficient synthesis of both O-glycosides and nucleosides, which uses glycosyl ortho-(1-phenylvinyl)benzoates as donors. This glycosylation protocol enjoys the various features, including readily prepared and stable donors, cheap and readily available promoters, mild reaction conditions, good to excellent yields, and broad substrate scopes. In particular, the applications of the current glycosylation protocol are demonstrated by one-pot synthesis of several bioactive oligosaccharides and highly efficient synthesis of nucleosides drugs capecitabine, galocitabine and doxifluridine.


Assuntos
Benzoatos/química , Técnicas de Química Sintética/métodos , Química Farmacêutica/métodos , Glicosídeos/síntese química , Nucleosídeos/síntese química , Produtos Biológicos/síntese química , Capecitabina/síntese química , Floxuridina/síntese química , Glicosilação , Estrutura Molecular
18.
Int J Mol Med ; 46(1): 360-370, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32626917

RESUMO

The present study assessed the effects of microRNA­1 (miR­1) on the development of osteoarthritis using human tissues and a Col2a1­Cre­ERT2/GFPfl/fl­RFP­miR­1 mouse model of osteoarthritis. Human cartilage tissues (n=20) were collected for reverse transcription­quantitative polymerase chain reaction (RT­qPCR), histological analysis and immunohistochemistry experiments. A transgenic mouse model of osteoarthritis was established by subjecting Col2a1­Cre­ERT2/GFPfl/fl­RFP­miR­1 transgenic mice to anterior cruciate ligament transection (ACLT). Mice were subjected to radiography and in vivo fluorescence molecular tomography (FMT), while mouse tissues were collected for histological analysis, RT­qPCR and Safranin O staining. It was found that the miR­1 level was downregulated, whereas the levels of Indian hedgehog (Ihh), as well as those of its downstream genes were upregulated in human osteoarthritic cartilage. In the transgenic mice, treatment with tamoxifen induced miR­1, as well as collagen, type II (Col2a1) and Aggrecan (Acan) expression; however, it decreased Ihh, glioma­associated oncogene homolog (Gli)1, Gli2, Gli3, smoothened homolog (Smo), matrix metalloproteinase (MMP)­13 and collagen type X (Col10) expression. Safranin O staining revealed cartilage surface damage in the non­tamoxifen + ACLT group, compared with that in the tamoxifen + ACLT group. Histologically, an intact cartilage surface and less fibrosis were observed in the tamoxifen + ACLT group. Immunohistochemistry revealed that the protein expression of Ihh, Col10, and MMP­13 was significantly higher in the joint tissues of the non­tamoxifen + ACLT group than in those of the tamoxifen + ACLT group. However, Col2a1 expression was lower in the joint tissues of the non­tamoxifen + ACLT group than in those of the tamoxifen + ACLT group. The results of RT­qPCR and FMT further confirmed these findings. On the whole, the findings of the present study demonstrate that miR­1 expression protects against osteoarthritis­induced cartilage damage and gene expression by inhibiting Ihh signaling.


Assuntos
Colágeno Tipo II/metabolismo , Proteínas Hedgehog/metabolismo , MicroRNAs/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Animais , Colágeno Tipo II/genética , Proteínas Hedgehog/genética , Ouriços/genética , Ouriços/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Osteoartrite/genética
19.
Org Lett ; 21(9): 3162-3166, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30993990

RESUMO

A Cu(I)-catalyzed [3 + 2] intramolecular cycloaddition reaction of N-indole-tethered cyclopropenes is presented in this paper. This reaction starts from the formation of π-allyl cationic intermediate or its resonance-stabilized metal carbenoid intermediate upon activation of cyclopropene with Cu(I) catalyst and a Friedel-Crafts-type cyclization to give functionalized hydrogenated diazabenzo[ a]cyclopenta[ cd]azulenes in good to excellent yields along with moderate to good dr values. The asymmetric variant of this cycloaddition reaction can be realized, giving the desired products with moderate ee values.

20.
Comput Biol Chem ; 79: 165-176, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30836318

RESUMO

AMP-activated protein kinase (AMPK) plays a major role in maintaining cellular energy homeostasis by sensing and responding to AMP/ADP concentrations relative to ATP. AMPK has attracted widespread attention as a potential therapeutic target for metabolic diseases such as cancer and cardiovascular diseases. The structure-based 3D pharmacophore model was developed based on the training set. The best pharmacophore model Hypo5 was proposed and validated using a decoy set, an external test set. Hypo5, with the correlation coefficient value of 0.936, cost difference value of 112.08 and low RMS value of 1.63, includes a ionizable positive, a hydrogen bond donor, a hydrogen bond acceptor and two hydrophobic features, which showed a high goodness of fit and enrichment factor. Thus it was used as a 3D query to find potential activator from the SPECS Database. Then the ADMET descriptors were used to filter all of 158 screening molecules. The 41 filtering compounds were subsequently subjected to molecular docking and Quantitative structure-activity relationship (QSAR) analysis. Finally, the compound H2 was picked out from those filtering compounds based on the receptor-ligand interaction analysis and the prediction of the QSAR models. And then it was submitted for molecular dynamics (MD) simulations to explore the stability of complex. The result indicates that the candidate could be considered a potential AMPK activator.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ativadores de Enzimas/análise , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade , Domínio Catalítico/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Ativadores de Enzimas/farmacologia , Humanos , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA