Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Future Oncol ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38445361

RESUMO

Background: The authors' preclinical study has confirmed that RO adjuvant (composed of TLR 7 agonists [imiquimod/R837] and OX40 agonists) injected into local lesions induces the regression of both primary tumor and distant metastasis. The authors propose to realize local control and exert abscopal effect through an 'R-ISV-RO' in situ strategy plus anti-PD-1 monoclonal antibody in advanced tumors. Methods: This study is a single-center, exploratory, phase II trial to evaluate the efficacy and safety of R-ISV-RO plus anti-PD-1 monoclonal antibody in advanced tumors. 30 patients with one or more measurable extracerebral lesions that are accessible for radiation or injection will be enrolled. The primary endpoint is the objective response rate of target lesions. Discussion/Conclusion: The efficacy and safety of the novel strategy will be further validated through this clinical trial.Clinical trial registration: ChiCTR2100053870 (www.chictr.org.cn/).


[Box: see text].

2.
Nano Lett ; 23(10): 4216-4225, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37155369

RESUMO

Adjuvant whole-breast radiotherapy is essential for breast cancer patients who adopted breast-conserving surgery (BCS) to reduce the risk of local recurrences, which however suffer from large-area and highly destructive ionizing radiation-induced adverse events. To tackle this issue, an afterglow/photothermal bifunctional polymeric nanoparticle (APPN) is developed that utilizes nonionizing light for precise afterglow imaging-guided post-BCS adjuvant second near-infrared (NIR-II) photothermal therapy. APPN consists of a tumor cell targeting afterglow agent, which is doped with a NIR dye as an afterglow initiator and a NIR-II light-absorbing semiconducting polymer as a photothermal transducer. Such a design realizes precise afterglow imaging-guided NIR-II photothermal ablation of minimal residual breast tumor foci after BCS, thus achieving complete inhibition of local recurrences. Moreover, APPN enables early diagnosis and treatment of local recurrence after BCS. This study thus provides a nonionizing modality for precision post-BCS adjuvant therapy and early recurrence theranostic.


Assuntos
Nanopartículas , Medicina de Precisão , Humanos , Fototerapia , Polímeros , Recidiva , Linhagem Celular Tumoral
3.
J Gastroenterol Hepatol ; 38(7): 1123-1130, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36879550

RESUMO

BACKGROUND AND AIM: Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor with high prevalence of KIT and PDGFRA mutations. Few effective treatments can be exploited in imatinib or sunitinib resistant cases. While in immunotherapy, application of the highly individualized cancer neoantigen vaccines is hampered due to high economic and time cost. In this study we identified the most frequent mutation in Chinese GIST patients and predicted candidate neopeptide by next generation sequencing (NGS). METHODS: Tumor tissues and matched blood samples of 116 Chinese GIST patients were collected. Genomic profile was detected through NGS, and 450 cancer genes were deeply sequenced. KIT mutations were identified, and long peptides containing the mutation were queried in NetMHCpan 4.0 tools to predict MHC class I binding of mutant peptides. RESULTS: The most frequent mutated genes in detected GIST patients were KIT (81.9%, 95/116), CDKN2A (18.97%, 22/116), and CDKN2B (15.52%, 18/116) in this cohort. The most common mutation of KIT was A502_Y503 duplication (15.93%, 18/113) in exon 9. Among the 116 cases, 103 were HLA I genotyped, and 101 were HLA II genotyped. In total, 16 samples with the mutation of KIT p.A502_Y503dup were identified to produce neoantigens with qualified HLA affinity. CONCLUSIONS: KIT hotspot mutation (p.A502_Y503dup) has the highest incidence, which may further eliminate the need for whole genome sequencing and patient-specific neoantigen prediction and synthesis. Therefore, for those carrying such mutation, accounting for around 16% of Chinese GIST patients and are usually less sensitive to imatinib, effective immunotherapies are in prospect.


Assuntos
Antineoplásicos , Tumores do Estroma Gastrointestinal , Humanos , Antineoplásicos/uso terapêutico , População do Leste Asiático , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/patologia , Mesilato de Imatinib/uso terapêutico , Mutação , Proteínas Proto-Oncogênicas c-kit/genética , Sunitinibe/uso terapêutico , Inibidor de Quinase Dependente de Ciclina p15/genética
4.
Cancer Sci ; 112(11): 4490-4500, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34537997

RESUMO

Various cancer vaccines have been developed to generate and amplify antigen-specific T cell responses against malignancy. Among them, in situ vaccination is one of the most practical types as it can trigger immune responses without previous antigen identification. Here we reported a novel in situ vaccine by intratumoral injection of imiquimod and OX40 agonist. In mice bearing hepatic carcinoma, both the injected tumor and the noninjected tumor in the distant lesion of the same mice were suppressed after vaccination. Further studies found that this in situ vaccine triggered systemic tumor-specific responses, with one-fold increase of effector memory T cells properties and stronger toxicity of lymphocytes in spleen. Besides, we found that imiquimod upregulated the expression of OX40 on CD4+ T cells and thus enhanced the effectiveness of OX40 agonist. Five immune-positive-related pathways were activated after vaccination. This in situ vaccine caused little harm to normal organs and provided long-term protection against the same syngeneic tumor rechallenge. Due to its effectiveness, feasibility and safety, this strategy could potentially be applied to various types of late-stage solid tumors and worthy of further clinical research.


Assuntos
Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Imiquimode/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Receptores OX40/agonistas , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/efeitos adversos , Feminino , Imiquimode/administração & dosagem , Imiquimode/efeitos adversos , Memória Imunológica/efeitos dos fármacos , Imunoterapia , Injeções Intralesionais/métodos , Neoplasias Hepáticas/imunologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Receptores OX40/metabolismo , Linfócitos T/efeitos dos fármacos , Receptor 7 Toll-Like/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Vacinação/métodos
5.
Small ; 16(5): e1905641, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31898866

RESUMO

Photodynamic therapy (PDT) is a promising technique for cancer therapy, providing good therapeutic efficacy with minimized side effect. However, the lack of oxygen supply in the hypoxic tumor site obviously restricts the generation of singlet oxygen (1 O2 ), thus limiting the efficacy of PDT. So far, the strategies to improve PDT efficacy usually rely on complicated nanosystems, which require sophisticated design or complex synthetic procedure. Herein, iodine-rich semiconducting polymer nanoparticles (SPN-I) for enhanced PDT, using iodine-induced intermolecular heavy-atom effect to elevate the 1 O2 generation, are designed and prepared. The nanoparticles are composed of a near-infrared (NIR) absorbing semiconducting polymer (PCPDTBT) serving as the photosensitizer and source of fluorescence signal, and an iodine-grafted amphiphilic diblock copolymer (PEG-PHEMA-I) serving as the 1 O2 generation enhancer and nanocarrier. Compared with SPN composed of PEG-b-PPG-b-PEG and PCPDTBT (SPN-P), SPN-I can enhance the 1 O2 generation by 1.5-fold. In addition, SPN-I have high X-ray attenuation coefficient because of the high density of iodine in PEG-PHEMA-I, providing SPN-I the ability of use with computed tomography (CT) and fluorescence dual-modal imaging. The study thus provides a simple nanotheranostic platform composed of two components for efficient CT/fluorescence dual-modal imaging-guided enhanced PDT.


Assuntos
Iodo , Neoplasias , Fotoquimioterapia , Polímeros , Pontos Quânticos , Humanos , Iodo/química , Neoplasias/terapia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Polímeros/química , Polímeros/uso terapêutico , Pontos Quânticos/química , Pontos Quânticos/uso terapêutico , Tomografia Computadorizada por Raios X
6.
Future Oncol ; 16(9): 469-481, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32048882

RESUMO

Immunocheckpoint inhibitors (ICIs) which target PD-1 and CTLA-4 have dramatically changed the history of non-small-cell lung cancer treatment. Multiple biomarkers especially tumor mutational burden (TMB) have been raised to be potential predictors of response to ICIs. However, great value of TMB has been observed in patients who receive ICIs monotherapy instead of ICIs combination therapy from latest exploratory studies. Thus, the innovative concept of TMB needs to be identified. This study uncovers specific aspects of TMB including signatures of TMB, factors related with variation, racial differences, heterogeneity between tissue TMB and blood-based TMB. Additionally, more and more factors are found valuable in clinical trials, suggesting that more markers should be further investigated as interesting candidates for response prediction beyond TMB.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/sangue , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Humanos , Imunoterapia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Mutação , Prognóstico , Microambiente Tumoral/genética
7.
Cell Physiol Biochem ; 44(6): 2158-2173, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29241186

RESUMO

BACKGROUND/AIMS: MicroRNA-21 is an oncogenic miR (oncomiR) frequently elevated in gastric cancer (GC). Overexpression of miR-21 decreases the sensitivity of GC cells to 5-fluorouridine (5-Fu) and trastuzumab, a humanized monoclonal antibody targeting human epidermal growth factor receptor 2 (HER2). Receptor-mediated endocytosis plays a crucial role in the delivery of biotherapeutics including anti-miRNA oligonucleotides (AMOs). This study is a continuation of earlier findings involving poly(ε-caprolactone) (PCL)-poly (ethylene glycol) (PEG) nanoparticles (PEG-PCL NPs), which were coated with trastuzumab to target GC with HER2 receptor over-expression using anti-miRNA-21 (AMO-21) and 5-Fu. METHODS: HER-PEG-PCL NPs were prepared by one-step carbodiimide coupling using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDAc) and Sulfo-NHS in aqueous phase. Covalent coupling of amino groups at the surface of PEG-PCL with the carboxyl groups of trastuzumab was analyzed by X-ray photoelectron spectroscopy (XPS). AMO-21/5-Fu NPs were formulated by a double-emulsion solvent evaporation technique. The cell line specificity, cellular uptake and AMO-21 delivery were investigated through the rhodamine-B-labeled 6-carboxyfluorescein (FAM)-AMO-21-PEG-PCL NPs coated with or without the antibody in both Her2-positive (NUGC4) and negative GC cells (SGC7901) visualized by fluorescence microscopy. The cytotoxicity of the HER-PEG-PCL NPs encapsulating AMO-21 was evaluated by MTT and apoptosis. Real-time reverse-transcription polymerase chain reaction (RT-PCR) was used to examine miR-21 and phosphatase and tensin homolog (PTEN) and Sprouty2 expression in GC cell lines. The antitumor effects of AMO-21/5-Fu NPs were compared with other groups in xenograft gastric cancer mice. RESULTS: The antibody conjugates significantly enhanced the cellular uptake of NPs. The AMO-21/5-Fu NPs effectively suppressed the target miRNA expression in GC cells, which further up-regulated PTEN and Sprouty2. As a result, the sensitivity of HER2-expressing gastric cancer to trastuzumab and 5-Fu were enhanced both in vitro and in vivo. The approach enhanced the targeting by trastuzumab as well as antibody-dependent cellular cytotoxicity (ADCC) of immune effector cells Conclusions: Taken together, the results provide insight into the biological and clinical potential of targeted AMO-21 and 5-Fu co-delivery using modified trastuzumab for GC treatment.


Assuntos
Antagomirs/genética , Antagomirs/uso terapêutico , Antineoplásicos/uso terapêutico , MicroRNAs/genética , Neoplasias Gástricas/terapia , Trastuzumab/uso terapêutico , Uridina/análogos & derivados , Animais , Antagomirs/administração & dosagem , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Poliésteres/química , Receptor ErbB-2/análise , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Trastuzumab/administração & dosagem , Uridina/administração & dosagem , Uridina/uso terapêutico
8.
MedComm (2020) ; 5(7): e618, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38974711

RESUMO

T-cell receptor (TCR) engineered T-cell therapy, unlike chimeric antigen receptor T-cell therapy, relies on the inherent ability of TCRs to detect a wider variety of antigenic epitopes, such as protein fragments found internally or externally on cells. Hence, TCR-T-cell therapy offers broader possibilities for treating solid tumors. However, because of the complicated process of identifying specific antigenic peptides, their clinical application still encounters significant challenges. Thus, we aimed to establish a novel "universal" TCR-T "artificial antigen expression" technique that involves the delivery of the antigen to tumor cells using DSPE-PEG-NY-ESO-1157-165 liposomes (NY-ESO-1 Lips) to express TCR-T-cell-specific recognition targets. In vitro as well as in vivo studies revealed that they could accumulate efficiently in the tumor area and deliver target antigens to activate the tumor-specific cytotoxic T-cell immune response. NY-ESO-1 TCR-T therapy, when used in combination, dramatically curbed tumor progression and extended the longevity of mice. Additionally, PD-1 blockage enhanced the therapeutic effect of the aforementioned therapy. In conclusion, NY-ESO-1 Lips "cursed" tumor cells by enabling antigenic target expression on their surface. This innovative technique presents a groundbreaking approach for the widespread utilization of TCR-T in solid tumor treatment.

9.
Int J Biol Macromol ; 270(Pt 2): 132348, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750838

RESUMO

Gambogic acid is a natural compound with anticancer properties and is effective for many tumors. But its low water solubility and dose-dependent side effects limit its clinical application. This study aims to develop a novel drug delivery system for intratumoral delivery of gambogic acid. In our experimental study, we propose a new method for encapsulating gambogic acid nanoparticles using a manganese composite hyaluronic acid hydrogel as a carrier, designed for targeted drug delivery to tumors. The hydrogel delivery system is synthesized through the coordination of hyaluronic acid-dopamine (HA-DOPA) and manganese ions. The incorporation of manganese ions serves three purposes:1.To form cross-linked hydrogels, thereby improving the mechanical properties of HA-DOPA.2.To monitor the retention of hydrogels in vivo in real-time using magnetic resonance imaging (MRI).3.To activate the body's immune response. The experimental results show that the designed hydrogel has good biosafety, in vivo sustained release effect and imaging tracking ability. In the mouse CT26 model, the hydrogel drug-loaded group can better inhibit tumor growth. Further immunological analysis shows that the drug-loaded hydrogel group can stimulate the body's immune response, thereby better achieving anti-tumor effects. These findings indicate the potential of the developed manganese composite hyaluronic acid hydrogel as an effective and safe platform for intratumoral drug delivery. The amalgamation of biocompatibility, controlled drug release, and imaging prowess positions this system as a promising candidate for tumor treatment.


Assuntos
Ácido Hialurônico , Hidrogéis , Manganês , Nanopartículas , Xantonas , Ácido Hialurônico/química , Animais , Manganês/química , Xantonas/química , Xantonas/farmacologia , Xantonas/administração & dosagem , Camundongos , Nanopartículas/química , Hidrogéis/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Imageamento por Ressonância Magnética
10.
Biomaterials ; 309: 122607, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38759487

RESUMO

The use of CAR-T cells in treating solid tumors frequently faces significant challenges, mainly due to the heterogeneity of tumor antigens. This study assessed the efficacy of an acidity-targeting transition-aided universal chimeric antigen receptor T (ATT-CAR-T) cell strategy, which is facilitated by an acidity-targeted transition. Specifically, the EGFRvIII peptide was attached to the N-terminus of a pH-low insertion peptide. Triggered by the acidic conditions of the tumor microenvironment, this peptide alters its structure and selectively integrates into the membrane of solid tumor cells. The acidity-targeted transition component effectively relocated the EGFRvIII peptide across various tumor cell membranes; thus, allowing the direct destruction of these cells by EGFRvIII-specific CAR-T cells. This method was efficient even when endogenous antigens were absent. In vivo tests showed marked antigen modification within the acidic tumor microenvironment using this component. Integrating this component with CAR-T cell therapy showed high effectiveness in combating solid tumors. These results highlight the capability of ATT-CAR-T cell therapy to address the challenges presented by tumor heterogeneity and expand the utility of CAR-T cell therapy in the treatment of solid tumors.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Microambiente Tumoral , Receptores de Antígenos Quiméricos/imunologia , Humanos , Animais , Linhagem Celular Tumoral , Concentração de Íons de Hidrogênio , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Neoplasias/imunologia , Camundongos , Receptores ErbB/metabolismo , Linfócitos T/imunologia , Feminino
11.
Cancer Med ; 12(8): 9260-9271, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36951597

RESUMO

BACKGROUND: Malignant myofibroblastic tumors are a rare group of soft tissue sarcomas, for which a prognosis prediction model is lacking. Based on the Surveillance, Epidemiology, and End Results (SEER) database and cases from Nanjing Drum Tower Hospital, the current study constructed and validated a nomogram to assess overall survival of patients with malignant myofibroblastic tumors. METHODS: Data of patients with myofibroblastic tumors diagnosed between 2000 and 2018 were extracted from the SEER database. Similarly, data of patients with myofibroblastic tumor in Nanjing Drum Tower Hospital between May 2016 and March 2022 were collected. Then, we conducted univariate and multivariate Cox analyses to identify independent prognostic parameters to develop the nomogram. The model was evaluated by concordance index (C-index), calibration curve, the area under the curve (AUC), decision curve analysis (DCA), Kaplan-Meier analysis, and subgroup analyses. RESULTS: Seven variables were selected to construct the nomogram. The results of the C-index (0.783), calibration curve, the AUCs, and subgroup analyses demonstrated the accurate predictive capacity and excellent discriminative ability of the nomogram. The DCA of the model indicated its better clinical net benefit than that of the traditional system. CONCLUSION: Evaluation of the predictive performance of the nomogram revealed the superior sensitivity and specificity of the model and the higher prediction accuracy of the outcomes compared with those of the traditional system. The established nomogram may assist patients in consultation and help physicians in clinical decision-making.


Assuntos
Nomogramas , Sarcoma , Humanos , Área Sob a Curva , Calibragem , Tomada de Decisão Clínica , Programa de SEER
12.
Thorac Cancer ; 14(14): 1316-1319, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36965139

RESUMO

One year following bladder cancer surgery, a 65-year-old man had computed tomography (CT) that revealed bilateral pulmonary nodules. Pulmonary wedge resections were performed after the nodules were found to grow in follow-up. Unusually, we found that these two lesions were not homologous, nor were they metastases from prior bladder cancer, and therefore, synchronous double primary lung cancer (sDPLC) was diagnosed. The immunohistochemical findings excluded the possibility of bladder cancer metastasis, but could not determine whether they were from the same source. Next generation sequencing (NGS) supported the diagnosis sDPLC because they amply demonstrated the two sources' distinct origins. Finally, after discussion with pathologists, this patient was diagnosed as small cell lung carcinoma (SCLC) and received postoperative EP chemotherapy. We also documented a few rather uncommon alterations that might serve as a foundation for further investigation. This case suggests that in addition to immunohistochemical, NGS is also helpful to clarify the etiology and refine the pathological classification of tumors, which has guiding significance for the establishment of precise diagnosis and optimal treatment.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Neoplasias da Bexiga Urinária , Masculino , Humanos , Idoso , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Neoplasias da Bexiga Urinária/complicações , Neoplasias da Bexiga Urinária/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
13.
Adv Healthc Mater ; 12(26): e2300877, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37567584

RESUMO

Doxorubicin (DOX) is the classic soft tissue sarcomas (STS) first-line treatment drug, while dose-dependent myelosuppression and cardiotoxicity limit its application in clinic. This research intends to apply DOX, which is also an inducer of immunogenic cell death as a part for "in situ vaccination" and conjointly uses PD-1 inhibitors to enhance antitumor efficacy. In order to achieve the sustained vaccination effect and real-time monitoring of distribution in vivo, the in situ forming and injectable hydrogel platform with the function of visualization is established for local delivery. The hydrogel platform is synthesized by hyaluronic acid-dopamine coordinated with gadolinium ions (Gd2+ ). Gd2+ provides the ability of magnetic resonance imaging, meanwhile further cross-linking the hydrogel network. Experiments show excellent ability of sustained release and imaging tracking for the hydrogel platform. In mouse STS models, the "in situ vaccination" hydrogels show the best effect of inhibiting tumor growth. Further analysis of tumor tissues show that "in situ vaccination" group can increase T cell infiltration, promote M1-type macrophage polarization and block elevated PD-1/PD-L1 pathway caused by DOX. These results are expected to prove the potential for synthesized hydrogels to achieve a universal platform for "in situ vaccination" strategies on STS treatments.


Assuntos
Hidrogéis , Sarcoma , Animais , Camundongos , Hidrogéis/farmacologia , Gadolínio , Doxorrubicina/farmacologia , Sarcoma/diagnóstico por imagem , Sarcoma/tratamento farmacológico , Vacinação
14.
Adv Sci (Weinh) ; 10(12): e2205044, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36755195

RESUMO

Chimeric antigen receptor (CAR)-T cell therapy is a transformative treatment against advanced malignancies. Unfortunately, once administrated in vivo, CAR-T cells become out of artificial control, and fierce response to CAR-T therapy may cause severe adverse events, represented by cytokine-release syndrome and on-target/off-tumor effects. Here, a nanomodified switch strategy is developed, leading to sustained and precise "on-tumor only" activation of CAR-T cells. Here, original gelatinase-responsive nanoparticles (NPs) are used to selectively deliver the heterodimerizing switch, which is the key component of switchable CAR with separated activation modules. The "NanoSwitch" is tumor-specific, thus inactivated switchable CAR-T cells do little harm to normal cells, even if the normal cells express the target of CAR-T. Owing to the sustained-release effect of NPs, the CAR-T cells are activated smoothly, avoiding sudden release of cytokine. These data introduce NanoSwitch as a universal and applicable solution to safety problems of CAR-T therapy regardless of the target.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos de Linfócitos T , Neoplasias/terapia , Citocinas , Linfócitos T
15.
Lung Cancer ; 181: 107255, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37244039

RESUMO

BACKGROUND: Microsatellite instability (MSI) is the first pan-cancer biomarker approved to guide immune checkpoint inhibitor therapy for MSI-high (MSI-H) solid tumors. In lung cancer, the MSI-H frequency is very low, and the genetic characteristics and prognosis of lung cancer with MSI-H were rarely reported. METHODS: Next-generation sequencing and immunohistochemistry were used detect MSI status, tumor mutation burden (TMB) and PD-L1 expression. RESULTS: Among 12,484 lung cancer patients screened, 66 were found with MSI-H, the proportion was as low as 0.5%. Compared with Microsatellite stability (MSS), TMB was higher in MSI-H lung cancer patients, while PD-L1 expression showed no considerable difference between MSI-H and MSS. After propensity score matching, compared with MSS, the most common companion mutations in MSI-H were TP53, BRCA2, TGFBR2, PTEN and KMT2C. In MSI-H lung adenocarcinoma with EGFR mutation, TGFBR2 and ERBB2 had higher mutation frequency than in MSS. CONCLUSION: The current study reveals the genetic characteristics of MSI-H lung cancer, which advanced our understanding of MSI-H lung cancer.


Assuntos
Neoplasias Colorretais , Neoplasias Pulmonares , Humanos , Instabilidade de Microssatélites , Antígeno B7-H1/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Estudos de Coortes , Prognóstico , Mutação , Genômica , Neoplasias Colorretais/patologia
16.
Front Immunol ; 14: 1133689, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056765

RESUMO

Introduction: Combination therapeutic mode is likely to be the key to enhance the efficacy of immunotherapy in a wider range of cancer patients. Herein, we conducted an open-label, single-arm, multicenter, phase II clinical trial that enrolled patients with advanced solid tumors who had progressed after standard treatments. Methods: Radiotherapy of 24 Gy/3 fractions/3-10 days was given to the targeted lesions. Liposomal irinotecan (80mg/m2, dose could be adjusted to 60 mg/m2 for intolerable cases) was intravenously (IV) administered once within 48 hours after radiotherapy. Then, camrelizumab (200mg IV, q3w) and anti-angiogenic drugs were given regularly until disease progression. The primary endpoint was objective response rate (ORR) in the target lesions evaluated by investigators per RECIST 1.1. The secondary endpoints were disease control rate (DCR) and treatment-related adverse events (TRAEs). Results: Between November 2020 and June 2022, 60 patients were enrolled. The median follow-up was 9.0 months (95% confidence interval (CI) 5.5-12.5). Of 52 evaluable patients, the overall ORR and DCR were 34.6% and 82.7%, respectively. Fifty patients with target lesions were evaluable, the ORR and DCR of the target lesions were 35.3% and 82.4%, respectively. The median progression-free survival was 5.3 months (95% CI 3.6, 6.2), and the median overall survival was not reached. TRAEs (all grades) occurred in 55 (91.7%) patients. The most common grade 3-4 TRAEs were lymphopenia (31.7%), anemia (10.0%), and leukopenia (10.0%). Conclusion: The combination of radiotherapy, liposomal irinotecan, camrelizumab, and anti-angiogenesis therapy demonstrated promising anti-tumor activity and well tolerance in various advanced solid tumors. Clinical trial registration: https://clinicaltrials.gov/ct2/home, identifier NCT04569916.


Assuntos
Anticorpos Monoclonais Humanizados , Neoplasias , Humanos , Irinotecano/efeitos adversos , Anticorpos Monoclonais Humanizados/efeitos adversos , Neoplasias/tratamento farmacológico , Neoplasias/induzido quimicamente , Imunoterapia
17.
Mol Pharm ; 9(2): 222-9, 2012 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-22171565

RESUMO

Paclitaxel (Ptx) has demonstrated encouraging activity in the treatment of gastric cancer. Development of drug-containing biodegradable polymeric nanoparticles (np) becomes one of the solutions to relieve side effects of Ptx. However, Ptx-loaded nanoparticles prepared by the nanoprecipitation method are unstable in the aqueous phase. Here we report that tetrandrine (Tet) effectively increases the stability of Ptx-loaded nanoparticles when Tet is coencapsulated with Ptx into mPEG-PCL nanoparticles. The current study demonstrates the synergistic antitumor effect of Tet and Ptx against gastric cancer cells, which provides the basis of coadministration of Tet and Ptx by nanoparticles. It is reported that the cellular chemoresistance to Ptx correlates with intracellular antioxidant capacity and the depletion of cellular antioxidant capacity could enhance the cytotoxicity of Ptx. Tet effectively induces intracellular ROS production. Therefore, the present study provides a promising novel therapeutic strategy basing on "oxidation therapy" that it could amplify the antitumor effect of paclitaxel by employing Tet as a pro-oxidant. More intracellular Tet accumulation by endocytosis of Ptx/Tet-np than equivalent doses of free drug leads to more intracellular ROS induction, which could efficiently enhance the cytotoxicity of Ptx by sequential inhibition of ROS-dependent Akt pathway and activation of apoptotic pathways, all of which would mediate the superior cytotoxicity of Ptx/Tet-np over free drug. The present results suggest that the codelivery of Ptx and Tet by nanoparticles provides a novel therapeutic strategy basing on "oxidation therapy" against gastric cancer.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Apoptose/efeitos dos fármacos , Benzilisoquinolinas/administração & dosagem , Portadores de Fármacos/química , Paclitaxel/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Sinergismo Farmacológico , Genes bcl-2 , Humanos , Nanopartículas/química , Tamanho da Partícula , Poliésteres/química , Polietilenoglicóis/química , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Vitamina E/farmacologia , Proteína X Associada a bcl-2/metabolismo
18.
Anticancer Drugs ; 23(10): 1078-88, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22797177

RESUMO

Novel pemetrexed-loaded gelatinase-responsive nanoparticles were prepared as a targeted delivery system to determine its potential for clinical therapy of malignant melanoma. The pemetrexed-loaded poly(ethylene glycol)(PEG)-peptide-poly(ε-caprolactone) (PCL) nanoparticles included a gelatinase-cleavage peptide and a PEG-PCL-based structure. The pemetrexed-loaded PEG-peptide-PCL nanoparticles have shown the best antimetastatic effect in experimental lung metastasis models. The expressions of CD133 and thymidylate synthetase of metastatic tumors were also evaluated in our studies. Our results showed that pemetrexed-loaded gelatinase-responsive nanoparticles may represent a potent drug delivery system for inhibiting pulmonary metastasis and our preclinical results can provide new avenues for clinical therapy of malignant melanoma.


Assuntos
Antineoplásicos/administração & dosagem , Gelatinases/metabolismo , Glutamatos/administração & dosagem , Guanina/análogos & derivados , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Melanoma Experimental/tratamento farmacológico , Nanopartículas/administração & dosagem , Antígeno AC133 , Animais , Antígenos CD/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Glutamatos/química , Glutamatos/farmacocinética , Glicoproteínas/metabolismo , Guanina/administração & dosagem , Guanina/química , Guanina/farmacocinética , Pulmão/efeitos dos fármacos , Pulmão/patologia , Neoplasias Pulmonares/patologia , Masculino , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Melanoma Experimental/secundário , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Metástase Neoplásica , Pemetrexede , Peptídeos/metabolismo , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Timidilato Sintase/metabolismo
19.
Mater Today Bio ; 15: 100305, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35734198

RESUMO

Intraperitoneal chemotherapy (IPC) has been considered as an effective therapy for advanced gastric cancer (GC) especially those with peritoneal metastasis, while limited effectiveness, complications caused by chemotherapeutics and repeated infusion procedures restrict the application of IPC. In this study, to enhance the efficacy and safety of IPC, we intended to establish a biocompatible and biodegradable nanocomplex composed of intelligent gelatinase-responsive nanoparticles (NPs) and thermosensitive gel, which were prepared from different compositions of poly (ethyleneglycol)-poly (3-caprolactone) (PEG-PCL). Cancer stem cells (CSCs) inhibitor Salinomycin (SAL) and non-CSC inhibitor Docetaxel (DOC) were co-loaded in the NPs and delivered by liquid PEG-PCL-PEG gel (PECE) at room temperature, which was able to target tumor and formed a gel in situ at body temperature. Compared with free SAL-DOC solution administered at the same dose, PECE NP group inhibited intraperitoneal disseminated gastric cancer growth more remarkably, some of which even achieved complete response (CR) and continued for more than 2 weeks. Cytometric analysis of cellular suspension from abdominal tumor tissues showed that the proportion of CSCs (CD44+CD133+) and the expression of PD-L1 on the tumor cells in the PECE NP group were the lowest. In the allograft mouse models of GC, PECE NP significantly improved the infiltration of M1 macrophages into the tumor bed in vivo. This design may provide biodegradable smart drug-delivery system for potential application in IPC.

20.
J Hematol Oncol ; 15(1): 29, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35303900

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR)-T cell therapy has demonstrated remarkable success in the treatment of hematologic malignancies, while the success has not yet been replicated in solid tumors. To some extent, the disappointing results can be attributed to the paucity and heterogeneity of target antigens in solid tumors since adequate antigens are the cornerstone for CAR-T cells to recognize and attack tumor cells. METHODS: We established a target-redirected universal CAR-T (TRUE CAR-T) cell therapeutic modality, in which exogenous antigens are loaded onto fusogenic nanoparticles to achieve in situ modification of cell membrane in solid tumors, providing targets for subsequent CAR-T cell therapy. The modification effect was evaluated by flow cytometry and confocal microscopic imaging. The in vivo metabolism and biodistribution of fusogenic antigen loaded nanoparticles (F-AgNPs) was explored using near infrared living imaging. Then F-AgNPs mediated in situ antigen modification were cooperated with corresponding CAR-T cell therapy, and its antitumor efficacy was evaluated using immune function experiments and further investigated in different tumor models. RESULTS: Using F-AgNPs, exogenous antigens were selectively modified onto tumor cell membranes through membrane fusion, spread deeper into tumor tissues through intercellular lipid transfer, further activating corresponding CAR-T cells and mediating antitumor immune responses towards multiple types of tumor cells, despite of their inherent antigen profiles. The cooperative treatment of F-AgNPs and CAR-T cell therapy successfully suppressed tumor proliferation and prolonged survival in both subcutaneous and peritoneally disseminated tumor models. CONCLUSION: The fusogenic nanoparticle-based in situ antigen modification overcome the limitation of target antigens paucity and heterogeneity in solid tumors, improving the efficacy and broadening the applications of CAR-T cells, thus establishing a novel TRUE CAR-T cell therapeutic modality with universal application and translational potential in immunotherapies for solid tumors.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Antígenos de Neoplasias , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA