Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 614(7946): 95-101, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36631612

RESUMO

Carbon structures with covalent bonds connecting C60 molecules have been reported1-3, but their production methods typically result in very small amounts of sample, which restrict the detailed characterization and exploration necessary for potential applications. We report the gram-scale preparation of a new type of carbon, long-range ordered porous carbon (LOPC), from C60 powder catalysed by α-Li3N at ambient pressure. LOPC consists of connected broken C60 cages that maintain long-range periodicity, and has been characterized by X-ray diffraction, Raman spectroscopy, magic-angle spinning solid-state nuclear magnetic resonance spectroscopy, aberration-corrected transmission electron microscopy and neutron scattering. Numerical simulations based on a neural network show that LOPC is a metastable structure produced during the transformation from fullerene-type to graphene-type carbons. At a lower temperature, shorter annealing time or by using less α-Li3N, a well-known polymerized C60 crystal forms owing to the electron transfer from α-Li3N to C60. The carbon K-edge near-edge X-ray absorption fine structure shows a higher degree of delocalization of electrons in LOPC than in C60(s). The electrical conductivity is 1.17 × 10-2 S cm-1 at room temperature, and conduction at T < 30 K appears to result from a combination of metallic-like transport over short distances punctuated by carrier hopping. The preparation of LOPC enables the discovery of other crystalline carbons starting from C60(s).

2.
Sensors (Basel) ; 22(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35591030

RESUMO

Semantic segmentation network-based methods can detect concrete damage at the pixel level. However, the performance of a single semantic segmentation network is often limited. To improve the concrete damage detection performance of a semantic segmentation network, a stacking ensemble learning-based concrete crack detection method using multiple semantic segmentation networks is proposed. To realize this method, a database including 500 images and their labels with concrete crack and spalling is built and divided into training and testing sets. At first, the training and prediction of five semantic segmentation networks (FCN-8s, SegNet, U-Net, PSPNet and DeepLabv3+) are respectively implemented on the built training set according to a five-fold cross-validation principle, where 80% of the training images are used in the training process, and 20% training images are reserved. Then, in predicting the results of reserved training images from trained semantic segmentation networks, the class labels of all pixels are collected, and then four softmax regression-based ensemble learning models are trained using the collected class labels and their true classification labels. The trained ensemble learning models are applied to regressed testing results of semantic segmentation network models. Compared with the best single semantic segmentation network, the best ensemble learning model provides performance improvement of 0.21% PA, 0.54% MPA, 3.66% MIoU, and 0.12% FWIoU, respectively. The study results show that the stacking ensemble learning strategy can indeed improve concrete damage detection performance through ensemble learning of multiple semantic segmentation networks.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Bases de Dados Factuais , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Semântica
3.
Nanotechnology ; 31(14): 145404, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-31891928

RESUMO

A facile route for the controllable synthesis of porous α-Fe2O3 supported by three-dimensional reduced graphene oxide (rGO) is presented. The synergistic effect between α-Fe2O3 and rGO can increase the electrolyte infiltration and improve lithium ion diffusion as well. Moreover, the combination of rGO nanosheets can increase the available surface area to provide more active sites and prevent α-Fe2O3 nanoparticles from agglomeration during the cycling process to ensure its long-term cycle performance. Consequently, the α-Fe2O3/rGO nanocomposites exhibit higher reversible specific capacity (1418.2 mAh g-1 at 0.1 A g-1), better rate capability (kept 804.5 mAh g-1 at 5.0 A g-1) and cycling stability than the α-Fe2O3 nanoparticles. Owing to the superior electrochemical performance, the α-Fe2O3/rGO nanocomposites might have a great potential as anode for lithium-ion batteries.

4.
Nanotechnology ; 30(2): 025401, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30387437

RESUMO

TT-Nb2O5 nanoparticles grown on electrically conducting fluorine-doped tin oxide (FTO) glass were successfully synthesized by a facile one-pot hydrothermal method at low temperature. The as-prepared nanostructured TT-Nb2O5/FTO was directly used as the working electrode to investigate its pseudocapacitive performance without any binder or conductive agent, which exhibited a high specific capacitance of 322 F g-1 at a current density of 3.68 A g-1, excellent rate capability (258.1 F g-1 at a high scan rate of 100 mV s-1 is about 91.6% of that at 5 mV s-1), and good cycling stability (the capacitance retention is 74.3% after 3000 cycles). More importantly, it is the first time electrochemical measurements for Nb2O5 electrode in aqueous electrolyte, which are low-cost and easy to operate, have been carried out.

5.
Cytokine ; 81: 23-7, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26844658

RESUMO

Postinfluenza pneumococcal pneumonia is an important cause of global morbidity and mortality. What causes this increased susceptibility is not well elucidated. IL-35 is a newly described cytokine in infectious tolerance. A murine model was established to study postinfluenza pneumococcal pneumonia and evaluate the role of IL-35 in host defense against postinfluenza pneumococcal pneumonia. Pulmonary IL-35 was rapidly up-regulated during murine influenza infection, which was partially mediated by type I IFN-α/ß receptor signaling pathway. Secondary pneumococcal infection led to a synergistic IL-35 response in influenza-infected mice. Clinical analysis showed that IL-35 levels were significantly elevated in the patients with influenza infection compared with healthy individuals and influenza infection could induce IL-35 production from human peripheral blood mononuclear cells. These data suggest that IL-35 contributes to the increased susceptibility to secondary pneumococcal pneumonia at least in part by inhibiting the early immune response.


Assuntos
Coinfecção/metabolismo , Interleucinas/metabolismo , Pulmão/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Pneumonia Pneumocócica/metabolismo , Animais , Células Cultivadas , Coinfecção/complicações , Cães , Ensaio de Imunoadsorção Enzimática , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/metabolismo , Influenza Humana/virologia , Subunidade p35 da Interleucina-12/genética , Subunidade p35 da Interleucina-12/metabolismo , Interleucinas/genética , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Pulmão/microbiologia , Pulmão/virologia , Células Madin Darby de Rim Canino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/virologia , Pneumonia Pneumocócica/complicações , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima
6.
Adv Mater ; : e2401965, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38631703

RESUMO

Tailorable lithium (Li) nucleation and uniform early-stage plating is essential for long-lifespan Li metal batteries. Among factors influencing the early plating of Li anode, the substrate is critical, but a fine control of the substrate structure on a scale of ≈10 nm has been rarely achieved. Herein, a carbon consisting of ordered grids is prepared, as a model to investigate the effect of substrate structure on the Li nucleation. In contrast to the individual spherical Li nuclei formed on the flat graphene, an ultrauniform and nuclei-free Li plating is obtained on the ordered carbon with a grid size smaller than the thermodynamical critical radius of Li nucleation (≈26 nm). Simultaneously, an inorganic-rich solid-electrolyte-interphase is promoted by the cross-sectional carbon layers of such ordered grids which are exposed to the electrolyte. Consequently, the carbon grids with a grid size of ≈10 nm show a favorable cycling stability for more than 1100 cycles measured at 2 mA cm-2 in a half cell. With LiNi0.8Co0.1Mn0.1O2 as cathode, the assembled full cell with a cathode capacity of 3 mAh cm-2 and a negative/positive ratio of 1.67 demonstrates a stable cycling for over 130 cycles with a capacity retention of 88%.

7.
Materials (Basel) ; 12(14)2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31330903

RESUMO

To study the influence of taper seal clearance on the static and rotor-dynamic characteristics of hole-pattern damper seals, this paper develops three-dimensional transient computational fluid dynamic methods, which comprise single-frequency and multi-frequency elliptical orbit whirl model, by the transient solution combined with a mesh deformation technique. Through the investigations, it is illustrated that: (1) In the present paper, the leakage rates of convergent-tapered hole-pattern damper seals are less than divergent-tapered hole-pattern damper seals for the same average seal clearance, and the maximum relative variation reaches 16%; (2) Compared with a constant clearance hole-pattern damper seal, the maximum relative variation of the rotor-dynamic coefficients is 1,865% for nine taper degrees in this paper; (3) Convergent-tapered hole-pattern damper seals have smaller reaction forces and effective damping coefficient, larger cross-over frequency, and direct stiffness coefficient, while divergent-tapered damper seals have the opposite effects; (4) Divergent-tapered hole-pattern damper seals alleviate the rotor whirl because of a larger effective damping coefficient when the rotor system has large natural frequency and small eccentricity. Convergent-tapered damper seals provide both sealing and journal bearing capabilities at the same time, and are more advantageous to the stability of the rotor system when rotor eccentricity is the main cause of rotor instability.

8.
ACS Appl Mater Interfaces ; 11(27): 24114-24121, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31245983

RESUMO

To meet the increasing demands for high-performance energy storage devices, an advanced lithium-ion hybrid capacitor (LIHC) has been designed and fabricated, which delivers an ultrahigh energy density of 295.1 Wh kg-1 and a power density of 41 250 W kg-1 with superior cycling stability. The high-performance LIHC device is based on the uniform porous Nb4N5/rGO nanocomposite, which has an intimate interface between the firmly contacted Nb4N5 and rGO through the Nb(Nb4N5)-O(rGO)-C(rGO) bonds, significantly improving the electron transport kinetics. Moreover, the introduction of rGO nanosheets can prevent the Nb4N5 nanoparticles from agglomeration, not only resulting in a larger specific surface area to provide more active sites but also accommodating the strain during Li ion insertion/deinsertion. Therefore, the Nb4N5/rGO nanocomposite exhibits a higher reversible specific capacity and better rate and cycling performance than the Nb4N5 nanoparticle. In view of the scalable preparation and superior electrochemical characteristics, the Nb4N5/rGO nanocomposite would have great potential practical applications in the future energy storage devices.

9.
Int Immunopharmacol ; 38: 267-74, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27318792

RESUMO

The development and progression of acute respiratory distress syndrome (ARDS) has been shown to be regulated by cytokines. IL-33 and HMGB1 are conventionally considered as nuclear proteins and have a proinflammatory role. Studies have confirmed that HMGB1 has a significant role in ARDS, but few studies have provided direct evidence to confirm that IL33 is involved in ARDS. The purpose of our study was to determine whether IL-33 is elevated in ARDS and the relationship between IL-33 and HMGB1 in ARDS. We established a mouse model of LPS-induced lung inflammation/injury. Serum, bronchoalveolar lavage fluid (BALF) and lung tissues were obtained to determine the related indicators. IL-33 levels in both the serum, BALF and lungs were significantly increased at 24h after LPS administration compared to the control group. We also found that HMGB1 and other Th1 cytokine/chemokine levels in serum and BALF were also significantly elevated, but the Th2 cytokine levels in serum and BALF didn't increase. To further study the relationship between IL-33 and HMGB1, mice were pretreated with glycyrrhizin (an inhibitor of HMGB1) prior to LPS administration. We found that the expression of IL-33 and HMGB1 were markedly lower than those in the LPS group and the lung injury was ameliorated. The levels of other Th1 cytokines and chemokines in serum and BALF were also significantly decreased. The results showed that IL-33 is likely a major factor in ARDS, and the release of HMGB1 may be correlated with up-regulation of IL-33 expression.


Assuntos
Proteína HMGB1/metabolismo , Interleucina-33/metabolismo , Pulmão/imunologia , Síndrome do Desconforto Respiratório/imunologia , Células Th1/imunologia , Animais , Modelos Animais de Doenças , Ácido Glicirrízico/administração & dosagem , Proteína HMGB1/antagonistas & inibidores , Humanos , Interleucina-33/imunologia , Lipopolissacarídeos/imunologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA