Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(38): 20792-20800, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37722104

RESUMO

Conversion of methane (CH4) to ethylene (C2H4) and/or acetylene (C2H2) enables routes to a wide range of products directly from natural gas. However, high reaction temperatures and pressures are often required to activate and convert CH4 controllably, and separating C2+ products from unreacted CH4 can be challenging. Here, we report the direct conversion of CH4 to C2H4 and C2H2 driven by non-thermal plasma under ambient (25 °C and 1 atm) and flow conditions over a metal-organic framework material, MFM-300(Fe). The selectivity for the formation of C2H4 and C2H2 reaches 96% with a high time yield of 334 µmol gcat-1 h-1. At a conversion of 10%, the selectivity to C2+ hydrocarbons and time yield exceed 98% and 2056 µmol gcat-1 h-1, respectively, representing a new benchmark for conversion of CH4. In situ neutron powder diffraction, inelastic neutron scattering and solid-state nuclear magnetic resonance, electron paramagnetic resonance (EPR), and diffuse reflectance infrared Fourier transform spectroscopies, coupled with modeling studies, reveal the crucial role of Fe-O(H)-Fe sites in activating CH4 and stabilizing reaction intermediates via the formation of an Fe-O(CH3)-Fe adduct. In addition, a cascade fixed-bed system has been developed to achieve online separation of C2H4 and C2H2 from unreacted CH4 for direct use. Integrating the processes of CH4 activation, conversion, and product separation within one system opens a new avenue for natural gas utility, bridging the gap between fundamental studies and practical applications in this area.

2.
J Transl Med ; 21(1): 670, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37759298

RESUMO

BACKGROUND: Gastric cancer (GC) is a fatal cancer with unclear pathogenesis. In this study, we explored the function and potential mechanisms of intercellular adhesion molecule 2 (ICAM2) in the development and advancement of GC. METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were performed to quantify ICAM2 expression in harvested GC tissues and cultured cell lines. Immunohistochemical analyses were conducted on a GC tissue microarray to quantify ICAM2 expression and explore its implication on the prognosis of GC patients. In vitro experiments were carried out to reveal the biological functions of ICAM2 in GC cell lines. Further, in vivo experiments were conducted using xenograft models to assess the impact of ICAM2 on GC development and metastasis. Western blot, immunofluorescence, immunoprecipitation, luciferase assay, chromatin immunoprecipitation, and ubiquitination analysis were employed to investigate the underlying mechanisms. RESULTS: ICAM2 expression was downregulated in GC, positively correlating with advanced T stage, distant metastasis, advanced clinical stage, vessel invasion, and shorter patient survival time. ICAM2 overexpression suppressed the proliferation, migration, invasion, metastasis of GC cells as well as their ability to form tumors, whereas ICAM2 knockdown yielded opposite results. Erythroblast transformation-specific-related gene (ERG) as a transcription factor promoted the transcription of ICAM2 by binding to the crucial response element localized within its promoter region. Further analysis revealed that ICAM2 reduced radixin (RDX) protein stability and expression. In these cells, ICAM2 bound to the RDX protein to promote the ubiquitination and degradation of RDX via NEDD4 Like E3 Ubiquitin Protein Ligase (NEDD4L), and this post-translational modification resulted in the inhibition of GC. CONCLUSIONS: In summary, this study demonstrates that ICAM2, which is induced by ERG, suppresses GC progression by enhancing the ubiquitination and degradation of RDX in a NEDD4L-dependent manner. Therefore, these results suggest that ICAM2 is a potential prognostic marker and a therapeutic target for GC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Estudos Prospectivos , Ubiquitinação , Moléculas de Adesão Celular , Regulador Transcricional ERG
3.
J Am Chem Soc ; 144(27): 11969-11974, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35775201

RESUMO

The development of materials showing rapid proton conduction with a low activation energy and stable performance over a wide temperature range is an important and challenging line of research. Here, we report confinement of sulfuric acid within porous MFM-300(Cr) to give MFM-300(Cr)·SO4(H3O)2, which exhibits a record-low activation energy of 0.04 eV, resulting in stable proton conductivity between 25 and 80 °C of >10-2 S cm-1. In situ synchrotron X-ray powder diffraction (SXPD), neutron powder diffraction (NPD), quasielastic neutron scattering (QENS), and molecular dynamics (MD) simulation reveal the pathways of proton transport and the molecular mechanism of proton diffusion within the pores. Confined sulfuric acid species together with adsorbed water molecules play a critical role in promoting the proton transfer through this robust network to afford a material in which proton conductivity is almost temperature-independent.

4.
J Am Chem Soc ; 144(29): 13196-13204, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35848823

RESUMO

The development of efficient sorbent materials for sulfur dioxide (SO2) is of key industrial interest. However, due to the corrosive nature of SO2, conventional porous materials often exhibit poor reversibility and limited uptake toward SO2 sorption. Here, we report high adsorption of SO2 in a series of Cu(II)-carboxylate-based metal-organic framework materials. We describe the impact of ligand functionalization and open metal sites on the uptake and reversibility of SO2 adsorption. Specifically, MFM-101 and MFM-190(F) show fully reversible SO2 adsorption with remarkable capacities of 18.7 and 18.3 mmol g-1, respectively, at 298 K and 1 bar; the former represents the highest reversible uptake of SO2 under ambient conditions among all porous solids reported to date. In situ neutron powder diffraction and synchrotron infrared microspectroscopy enable the direct visualization of binding domains of adsorbed SO2 molecules as well as host-guest binding dynamics. We have found that the combination of open Cu(II) sites and ligand functionalization, together with the size and geometry of metal-ligand cages, plays an integral role in the enhancement of SO2 binding.

5.
J Am Chem Soc ; 144(19): 8624-8632, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35533381

RESUMO

The presence of active sites in metal-organic framework (MOF) materials can control and affect their performance significantly in adsorption and catalysis. However, revealing the interactions between the substrate and active sites in MOFs at atomic precision remains a challenging task. Here, we report the direct observation of binding of NH3 in a series of UiO-66 materials containing atomically dispersed defects and open Cu(I) and Cu(II) sites. While all MOFs in this series exhibit similar surface areas (1111-1135 m2 g-1), decoration of the -OH site in UiO-66-defect with Cu(II) results in a 43% enhancement of the isothermal uptake of NH3 at 273 K and 1.0 bar from 11.8 in UiO-66-defect to 16.9 mmol g-1 in UiO-66-CuII. A 100% enhancement of dynamic adsorption of NH3 at a concentration level of 630 ppm from 2.07 mmol g-1 in UiO-66-defect to 4.15 mmol g-1 in UiO-66-CuII at 298 K is observed. In situ neutron powder diffraction, inelastic neutron scattering, and electron paramagnetic resonance, solid-state nuclear magnetic resonance, and infrared spectroscopies, coupled with modeling reveal that the enhanced NH3 uptake in UiO-66-CuII originates from a {Cu(II)···NH3} interaction, with a reversible change in geometry at Cu(II) from near-linear to trigonal coordination. This work represents the first example of structural elucidation of NH3 binding in MOFs containing open metal sites and will inform the design of new efficient MOF sorbents by targeted control of active sites for NH3 capture and storage.

6.
Mol Biol Rep ; 49(9): 8337-8347, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35690960

RESUMO

BACKGROUND: The immunomodulatory function of mesenchymal stem cells (MSCs) has been considered to be vital for MSC-based therapies. Many works have been devoted to excavate effective strategies for enhancing the immunomodulation effect of MSCs. Nonetheless, canine MSC-mediated immunomodulation is still poorly understood. METHODS AND RESULTS: The inflammatory microenvironment was simulated through the employment of interferon-γ (IFN-γ) in a culture system. Compared with unstimulated cBMSCs, IFN-γ stimulation increased the mRNA levels of Toll-like receptor 3 (TLR3) and indoleamine 2, 3-dioxygenase 1 (IDO-1), and simultaneously enhanced the secretion of immunosuppressive molecules, including interleukin (IL)-10, hepatocyte growth factor (HGF), and kynurenine in cBMSCs. IFN-γ stimulation significantly enhanced the ability of cBMSCs and their supernatant to suppress the proliferation of murine spleen lymphocytes. Lymphocyte subtyping evaluation revealed that cBMSCs and their supernatant diminished the percentage of CD3+CD4+ and CD3+CD8+ lymphocytes compared with the control group, with a decreasing CD4+/CD8+ ratio. Notably, exposure to IFN-γ decreased the CD4+/CD8+ ratio more effectively than unstimulated cells or supernatant. Additionally, IFN-γ-stimulation increased the mRNA levels of the Th1 cytokines TNF-α, and remarkably decreased the mRNA level of the Th2 cytokine IL-4 and IL-10. CONCLUSION: Our findings substantiate that IFN-γ stimulation can enhance the immunomodulatory properties of cBMSCs by promoting TLR3-dependent activation of the IDO/kynurenine pathway, increasing the secretion of immunoregulatory molecules and strengthening interactions with T lymphocytes, which may provide a meaningful strategy for the clinical application of cBMSCs in immune-related diseases.


Assuntos
Terapia de Imunossupressão , Indolamina-Pirrol 2,3,-Dioxigenase , Interferon gama , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Receptor 3 Toll-Like , Animais , Proliferação de Células , Células Cultivadas , Cães , Terapia de Imunossupressão/métodos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama/farmacologia , Cinurenina/metabolismo , Cinurenina/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/imunologia , Camundongos , RNA Mensageiro/metabolismo , Receptor 3 Toll-Like/metabolismo
7.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232317

RESUMO

A disintegrin and metalloproteinase with thrombospondin motifs 16 (ADAMTS16) has been reported to be involved in the pathogenesis of solid cancers. However, its role in gastric cancer (GC) is unclear. In this study, the role of ADAMTS16 in gastric cancer was investigated. The effects of ADAMTS16 on cell migration, invasion, and proliferation were investigated by functional experiments in vivo and in vitro. Downstream signal pathways of ADAMTS16 were confirmed by using bioinformatics analysis, co-immunoprecipitation, and immunofluorescence. Meanwhile, bioinformatics analysis, qRT-PCR, western blot, and dual-luciferase reporter gene analysis assays were used to identify ADAMTS16 targets. The expression of ADAMTS16 in GC was analyzed in public datasets. The expression of ADAMTS16 and its correlations with the clinical characteristics of GC were investigated by immunohistochemistry. Ectopic ADAMTS16 expression significantly promoted tumor cell migration, invasion, and growth. Bioinformatics analysis and western blot showed that ADAMTS16 upregulated the IFI27 protein through the NF-κb pathway, which was confirmed by immunofluorescence and western blot. Dual-luciferase reporter gene analysis identified a binding site between P65 and IFI27 that may be directly involved in the transcriptional regulation of IFI27. IFI27 knockdown reversed the promoting effect of ADAMTS16 on cell invasion, migration, and proliferation indicating that ADAMTS16 acts on GC cells by targeting the NF-κb/IFI27 axis. ADAMTS16 was associated with poor prognosis in clinical characteristics. ADAMTS16 promotes cell migration, invasion, and proliferation by targeting IFI27 through the NF-κB pathway and is a potential progressive and survival biomarker of GC.


Assuntos
MicroRNAs , Neoplasias Gástricas , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Desintegrinas , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Membrana/metabolismo , MicroRNAs/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Trombospondinas/metabolismo
8.
J Am Chem Soc ; 143(46): 19300-19305, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34780153

RESUMO

The development of porous solids for adsorptive separation of propylene and propane remains an important and challenging line of research. State-of-the-art sorbent materials often suffer from the trade-off between adsorption capacity and selectivity. Here, we report the regulated separation of propylene and propane in a metal-organic framework via designed pore distortion. The distorted pore structure of HIAM-301 successfully excludes propane and thus achieved simultaneously high selectivity (>150) and large capacity (∼3.2 mmol/g) of propylene at 298 K and 1 bar. Dynamic breakthrough measurements validated the excellent separation of propane and propylene. In situ neutron powder diffraction and inelastic neutron scattering revealed the binding domains of adsorbed propylene molecules in HIAM-301 as well as host-guest interaction dynamics. This study presents a new benchmark for the adsorptive separation of propylene and propane.

9.
J Am Chem Soc ; 143(29): 10977-10985, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34279096

RESUMO

Metal-organic framework (MOF) materials provide an excellent platform to fabricate single-atom catalysts due to their structural diversity, intrinsic porosity, and designable functionality. However, the unambiguous identification of atomically dispersed metal sites and the elucidation of their role in catalysis are challenging due to limited methods of characterization and lack of direct structural information. Here, we report a comprehensive investigation of the structure and the role of atomically dispersed copper sites in UiO-66 for the catalytic reduction of NO2 at ambient temperature. The atomic dispersion of copper sites on UiO-66 is confirmed by high-angle annular dark-field scanning transmission electron microscopy, electron paramagnetic resonance spectroscopy, and inelastic neutron scattering, and their location is identified by neutron powder diffraction and solid-state nuclear magnetic resonance spectroscopy. The Cu/UiO-66 catalyst exhibits superior catalytic performance for the reduction of NO2 at 25 °C without the use of reductants. A selectivity of 88% for the formation of N2 at a 97% conversion of NO2 with a lifetime of >50 h and an unprecedented turnover frequency of 6.1 h-1 is achieved under nonthermal plasma activation. In situ and operando infrared, solid-state NMR, and EPR spectroscopy reveal the critical role of copper sites in the adsorption and activation of NO2 molecules, with the formation of {Cu(I)···NO} and {Cu···NO2} adducts promoting the conversion of NO2 to N2. This study will inspire the further design and study of new efficient single-atom catalysts for NO2 abatement via detailed unravelling of their role in catalysis.

10.
J Am Chem Soc ; 143(8): 3153-3161, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33606937

RESUMO

Ammonia (NH3) is a promising energy resource owing to its high hydrogen density. However, its widespread application is restricted by the lack of efficient and corrosion-resistant storage materials. Here, we report high NH3 adsorption in a series of robust metal-organic framework (MOF) materials, MFM-300(M) (M = Fe, V, Cr, In). MFM-300(M) (M = Fe, VIII, Cr) show fully reversible capacity for >20 cycles, reaching capacities of 16.1, 15.6, and 14.0 mmol g-1, respectively, at 273 K and 1 bar. Under the same conditions, MFM-300(VIV) exhibits the highest uptake among this series of MOFs of 17.3 mmol g-1. In situ neutron powder diffraction, single-crystal X-ray diffraction, and electron paramagnetic resonance spectroscopy confirm that the redox-active V center enables host-guest charge transfer, with VIV being reduced to VIII and NH3 being oxidized to hydrazine (N2H4). A combination of in situ inelastic neutron scattering and DFT modeling has revealed the binding dynamics of adsorbed NH3 within these MOFs to afford a comprehensive insight into the application of MOF materials to the adsorption and conversion of NH3.

11.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34768788

RESUMO

Senescence in mesenchymal stem cells (MSCs) not only hinders the application of MSCs in regenerative medicine but is also closely correlated with biological aging and the development of degenerative diseases. In this study, we investigated the anti-aging effects of curcumin (Cur) on canine bone marrow-derived MSCs (cBMSCs), and further elucidated the potential mechanism of action based on the modulation of autophagy. cBMSCs were expanded in vitro with standard procedures to construct a cell model of premature senescence. Our evidence indicates that compared with the third passage of cBMSCs, many typical senescence-associated phenotypes were observed in the sixth passage of cBMSCs. Cur treatment can improve cBMSC survival and retard cBMSC senescence according to observations that Cur (1 µM) treatment can improve the colony-forming unit-fibroblasts (CFU-Fs) efficiency and upregulated the mRNA expression of pluripotent transcription factors (SOX-2 and Nanog), as well as inhibiting the senescence-associated beta-galactosidase (SA-ß-gal) activities and mRNA expression of the senescence-related markers (p16 and p21) and pro-inflammatory molecules (tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)). Furthermore, Cur (0.1 µM~10 µM) was observed to increase autophagic activity, as identified by upregulation of microtubule-associated protein 1 light chain 3 (LC3), unc51-like autophagy-activating kinase-1 (ULK1), autophagy-related gene (Atg) 7 and Atg12, and the generation of type II of light chain 3 (LC3-II), thereby increasing autophagic vacuoles and acidic vesicular organelles, as well as causing a significant decrease in the p62 protein level. Moreover, the autophagy activator rapamycin (RAP) and Cur were found to partially ameliorate the senescent features of cBMSCs, while the autophagy inhibitor 3-methyladenine (3-MA) was shown to aggravate cBMSCs senescence and Cur treatment was able to restore the suppressed autophagy and counteract 3-MA-induced cBMSC senescence. Hence, our study highlights the important role of Cur-induced autophagy and its effects for ameliorating cBMSC senescence and provides new insight for delaying senescence and improving the therapeutic potential of MSCs.


Assuntos
Senescência Celular/efeitos dos fármacos , Curcumina/farmacologia , Células-Tronco Mesenquimais/metabolismo , Animais , Autofagossomos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Senescência Celular/fisiologia , China , Curcumina/metabolismo , Cães , Feminino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
12.
Angew Chem Int Ed Engl ; 60(12): 6526-6532, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33368904

RESUMO

The almost identical molecular sizes and volatilities of acetylene and carbon dioxide make their separation extremely challenging in industry. Reported here is the efficient separation of acetylene and carbon dioxide (v/v=2/1, which is relevant to that in the industrial cracking stream) in faujasite zeolites decorated with atomically-dispersed copper(II) sites under ambient conditions. In situ neutron powder diffraction and inelastic neutron scattering confirm that the confined copper(II) site displays chemoselective yet reversible binding to acetylene, whereas adsorbed carbon dioxide molecules are stabilized by weak host-guest supramolecular interactions with the framework oxygen centers, thus resulting in the efficient separation of these two gases under flow conditions. A designed adsorption-purging-desorption system based upon Cu@FAU is established for the recovery of high purity acetylene (98-99 %) from the mixture of acetylene and carbon dioxide, offering an unprecedented separation factor of 22.2 with an effective dynamic uptake of acetylene of 1.51 mmol g-1 at 298 K.

13.
J Am Chem Soc ; 142(45): 19189-19197, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33124803

RESUMO

Structural transitions of host systems in response to guest binding dominate many chemical processes. We report an unprecedented type of structural flexibility within a meta-rigid material, MFM-520, which exhibits a reversible periodic-to-aperiodic structural transition resulting from a drastic distortion of a [ZnO4N] node controlled by the specific host-guest interactions. The aperiodic crystal structure of MFM-520 has no three-dimensional (3D) lattice periodicity but shows translational symmetry in higher-dimensional (3 + 2)D space. We have directly visualized the aperiodic state which is induced by incommensurate modulation of the periodic framework of MFM-520·H2O upon dehydration to give MFM-520. Filling MFM-520 with CO2 and SO2 reveals that, while CO2 has a minimal structural influence, SO2 can further modulate the structure incommensurately. MFM-520 shows exceptional selectivity for SO2 under flue-gas desulfurization conditions, and the facile release of captured SO2 from MFM-520 enabled the conversion to valuable sulfonamide products. MFM-520 can thus be used as a highly efficient capture and delivery system for SO2.

14.
J Am Chem Soc ; 142(29): 12802-12810, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32638590

RESUMO

Melanins are a family of heterogeneous biopolymers found ubiquitously across plant, animal, bacterial, and fungal kingdoms where they act variously as pigments and as radiation protection agents. There exist five multifunctional yet structurally and biosynthetically incompletely understood varieties of melanin: eumelanin, neuromelanin, pyomelanin, allomelanin, and pheomelanin. Although eumelanin and allomelanin have been the focus of most radiation protection studies to date, some research suggests that pheomelanin has a better absorption coefficient for X-rays than eumelanin. We reasoned that if a selenium enriched melanin existed, it would be a better X-ray protector than the sulfur-containing pheomelanin because the X-ray absorption coefficient is proportional to the fourth power of the atomic number (Z). Notably, selenium is an essential micronutrient, with the amino acid selenocysteine being genetically encoded in 25 natural human proteins. Therefore, we hypothesize that selenomelanin exists in nature, where it provides superior ionizing radiation protection to organisms compared to known melanins. Here we introduce this novel selenium analogue of pheomelanin through chemical and biosynthetic routes using selenocystine as a feedstock. The resulting selenomelanin is a structural mimic of pheomelanin. We found selenomelanin effectively prevented neonatal human epidermal keratinocytes (NHEK) from G2/M phase arrest under high-dose X-ray irradiation. Provocatively, this beneficial role of selenomelanin points to it as a sixth variety of yet to be discovered natural melanin.


Assuntos
Melaninas/química , Compostos Organosselênicos/química , Selênio/química , Humanos , Queratinócitos/efeitos dos fármacos , Melaninas/farmacologia , Estrutura Molecular , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/farmacologia , Tamanho da Partícula , Selênio/farmacologia , Propriedades de Superfície , Raios X
15.
Appl Environ Microbiol ; 86(5)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31836580

RESUMO

Melanin is a pigment produced by organisms throughout all domains of life. Due to its unique physicochemical properties, biocompatibility, and biostability, there has been an increasing interest in the use of melanin for broad applications. In the vast majority of studies, melanin has been either chemically synthesized or isolated from animals, which has restricted its use to small-scale applications. Using bacteria as biocatalysts is a promising and economical alternative for the large-scale production of biomaterials. In this study, we engineered the marine bacterium Vibrio natriegens, one of the fastest-growing organisms, to synthesize melanin by expressing a heterologous tyrosinase gene and demonstrated that melanin production was much faster than in previously reported heterologous systems. The melanin of V. natriegens was characterized as a polymer derived from dihydroxyindole-2-carboxylic acid (DHICA) and, similarly to synthetic melanin, exhibited several characteristic and useful features. Electron microscopy analysis demonstrated that melanin produced from V. natriegens formed nanoparticles that were assembled as "melanin ghost" structures, and the photoprotective properties of these particles were validated by their protection of cells from UV irradiation. Using a novel electrochemical reverse engineering method, we observed that melanization conferred redox activity to V. natriegens Moreover, melanized bacteria were able to quickly adsorb the organic compound trinitrotoluene (TNT). Overall, the genetic tractability, rapid division time, and ease of culture provide a set of attractive properties that compare favorably to current E. coli production strains and warrant the further development of this chassis as a microbial factory for natural product biosynthesis.IMPORTANCE Melanins are macromolecules that are ubiquitous in nature and impart a large variety of biological functions, including structure, coloration, radiation resistance, free radical scavenging, and thermoregulation. Currently, in the majority of investigations, melanins are either chemically synthesized or extracted from animals, which presents significant challenges for large-scale production. Bacteria have been used as biocatalysts to synthesize a variety of biomaterials due to their fast growth and amenability to genetic engineering using synthetic biology tools. In this study, we engineered the extremely fast-growing bacterium V. natriegens to synthesize melanin nanoparticles by expressing a heterologous tyrosinase gene with inducible promoters. Characterization of the melanin produced from V. natriegens-produced tyrosinase revealed that it exhibited physical and chemical properties similar to those of natural and chemically synthesized melanins, including nanoparticle structure, protection against UV damage, and adsorption of toxic compounds. We anticipate that producing and controlling melanin structures at the nanoscale in this bacterial system with synthetic biology tools will enable the design and rapid production of novel biomaterials for multiple applications.


Assuntos
Bacillus megaterium/genética , Biopolímeros/metabolismo , Melaninas/biossíntese , Microrganismos Geneticamente Modificados/metabolismo , Monofenol Mono-Oxigenase/genética , Vibrio/metabolismo , Biopolímeros/genética , Microrganismos Geneticamente Modificados/genética , Monofenol Mono-Oxigenase/metabolismo , Vibrio/genética
16.
Opt Express ; 28(22): 32556-32571, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114939

RESUMO

We investigate the optimal quantum state for an atomic gyroscope based on a three-site Bose-Hubbard model. In previous studies, various states such as the uncorrelated state, the BAT state and the NOON state are employed as the probe states to estimate the phase uncertainty. In this article, we present a Hermitian operator H and an equivalent unitary parametrization transformation to calculate the quantum Fisher information for any initial states. Exploiting this equivalent unitary parametrization transformation, we can seek the optimal state that gives the maximal quantum Fisher information on both lossless and lossy conditions. As a result, we find that the squeezed entangled state (SES) and the entangled even squeezed state (EESS) can significantly enhance the precision for moderate loss rates compared with previous proposals.

17.
Biomacromolecules ; 20(12): 4593-4601, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31696706

RESUMO

Eumelanin is a ubiquitous natural pigment that has a broad absorption across ultraviolet (UV, 100-400 nm) and visible wavelengths (400-700 nm) and can protect against radiation. Synthetic eumelanin with properties similar to natural eumelanin has been made using dopamine or dihydroxyindole. Here, we use solid-state nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy to elucidate the chemical structure of synthetic eumelanins (made from dopamine and l-3,4-dihydroxyphenylalanine precursors) and investigate how their structures change after intensive UVA (315-400 nm) exposure. We first confirm that polydopamine has indole units. Upon UV exposure, the pyrrole ring in this indole unit remains intact, and a fraction of the six-membered benzyl ring is broken and the indole potentially converted to furo[3,4-b]pyrrole. This change in the chemical structure is accompanied by a release of carbon dioxide. In addition, the sepia (natural) eumelanin used for comparison is more stable than the synthetic eumelanin. Understanding the UVA degradation mechanism of eumelanin will help reveal the role of eumelanin in skin cancer and in the design of more efficient UV stabilizers.


Assuntos
Melaninas/química , Processos Fotoquímicos , Raios Ultravioleta , Animais , Humanos , Melaninas/metabolismo , Neoplasias Cutâneas/metabolismo
18.
Int J Mol Sci ; 19(9)2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134550

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of tumours, and its incidence is rising worldwide. Although survival can be improved by surgical resection when these tumours are detected at an early stage, this cancer is usually asymptomatic, and disease only becomes apparent after metastasis. Several risk factors are associated with this disease, the most relevant being chronic pancreatitis, diabetes, tobacco and alcohol intake, cadmium, arsenic and lead exposure, certain infectious diseases, and the mutational status of some genes associated to a familial component. PDAC incidence has increased in recent decades, and there are few alternatives for chemotherapeutic treatment. Endoplasmic reticulum (ER) stress factors such as GRP78/BiP (78 kDa glucose-regulated protein), ATF6α (activating transcription factor 6 isoform α), IRE1α (inositol-requiring enzyme 1 isoform α), and PERK (protein kinase RNA-like endoplasmic reticulum kinase) activate the transcription of several genes involved in both survival and apoptosis. Some of these factors aid in inducing a non-proliferative state in cancer called dormancy. Modulation of endoplasmic reticulum stress could induce dormancy of tumour cells, thus prolonging patient survival. In this systematic review, we have compiled relevant results concerning those endoplasmic reticulum stress factors involved in PDAC, and we have analysed the mechanism of dormancy associated to endoplasmic reticulum stress and its potential use as a chemotherapeutic target against PDAC.


Assuntos
Anticorpos/farmacologia , Carcinoma Ductal Pancreático/terapia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Choque Térmico/antagonistas & inibidores , Neoplasias Pancreáticas/terapia , Sulfonas/farmacologia , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Animais , Carcinoma Ductal Pancreático/etiologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Doenças Transmissíveis/complicações , Doenças Transmissíveis/genética , Doenças Transmissíveis/metabolismo , Doenças Transmissíveis/patologia , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Complicações do Diabetes/genética , Complicações do Diabetes/metabolismo , Complicações do Diabetes/patologia , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/genética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Pancreatite Crônica/complicações , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo , Pancreatite Crônica/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fatores de Risco , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Gencitabina
19.
J Ethnopharmacol ; 323: 117685, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38171467

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Placenta is a kind of traditional Chinese medicine, known as "Ziheche", which has the function of tonifying qi and blood, nourishing liver and kidney. Placenta extract (PE) has been used for delaying organismal aging and treating various liver diseases. Cow placenta is a rich natural resource with large mass. Its composition is similar to that of human placenta, but it has not been effectively utilized. However, little is known about the effect of CPE on the liver of aging mice. AIM OF THE STUDY: The aim of this study is to explore the protective effect and mechanism of CPE on the liver of d-galactose (D-gal) induced aging mice. MATERIALS AND METHODS: Statistical methods were used to calculate mouse body weight and liver index. Hematoxylin-eosin (H&E) and transmission electron microscopy (TEM) were used to detect the morphological structure of the liver. Automatic biochemical analyzer was used to measure serum biochemical indicators. Three special staining methods were used to observe hepatocytes apoptosis, senescence and proliferation respectively. Relative kits were used to detect oxidative, inflammatory, and aging markers in the liver. Finally, real-time quantitative polymerase chain reaction and western-blot were used to detect aging related signaling pathways. RESULTS: CPE significantly improved the morphological damage and dysfunction of liver, restored the activities of liver enzymes in serum, and alleviated liver oxidative stress and inflammatory response in D-gal induced aging mice. Furthermore, CPE inhibited hepatocyte apoptosis and senescence, and promoted hepatocyte proliferation by regulating BAX/CASP3 and p53/p21/p16 signaling pathways, ultimately reduced the effects of aging on the liver. CONCLUSION: CPE effectively ameliorated the impact of aging on the liver by inhibiting free radical production or scavenging excessive free radicals, and its mechanism is associated to the regulation of apoptosis and proliferation-related factors.


Assuntos
Antioxidantes , Hepatopatias , Feminino , Humanos , Camundongos , Bovinos , Animais , Antioxidantes/farmacologia , Proteína X Associada a bcl-2/metabolismo , Galactose , Proteína Supressora de Tumor p53/metabolismo , Caspase 3/metabolismo , Estresse Oxidativo , Envelhecimento
20.
Clin Transl Med ; 14(3): e1621, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38468490

RESUMO

BACKGROUND: NOP2/Sun domain 2 (NSUN2) is one of the important RNA methyltransferases catalyzing 5-methylcytosine (m5C) formation and participates in many critical bioprocesses. However, the roles and underlying molecular mechanisms of NSUN2-mediated m5C modification in colorectal cancer (CRC) remain unclear. METHODS: To explore the NSUN2 expression in CRC, fresh tissue samples were collected and Nsun2 knockout mouse was constructed. In vitro and in vivo functional assays were conducted to assess the role of NSUN2. RNA array and bisulfite sequencing were used to investigate the potential targets. The mechanisms of NSUN2 function on SKIL were identified by m5C-methylated-RNA immunoprecipitation and RNA stability assays. Additionally, tissue microarray analysis was conducted and patient-derived tumour xenograft mouse (PDX) models were used to define the potential therapeutic targets. RESULTS: NSUN2 was highly expressed in CRC and correlated with poor CRC patient survival. Moreover, silencing NSUN2 suppressed CRC tumourigenesis and progression in Nsun2 knockout mouse models. In vitro and in vivo studies suggested that NSUN2 promoted colorectal cancer cell growth. Mechanistically, SKI-like proto-oncogene (SKIL) is positively regulated by NSUN2, and the NSUN2-SKIL axis is clinically relevant to CRC. NSUN2 induced m5C modification of SKIL and stabilized its mRNA, which was mediated by Y-box binding protein 1 (YBX1). Elevated SKIL levels increased transcriptional coactivator with PDZ-binding motif (TAZ) activation. CONCLUSIONS: Our findings highlight the importance of NSUN2 in the initiation and progression of CRC via m5C-YBX1-dependent stabilization of the SKIL transcript, providing a promising targeted therapeutic strategy for CRC.


Assuntos
Neoplasias Colorretais , Metiltransferases , Animais , Humanos , Camundongos , Neoplasias Colorretais/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Metiltransferases/genética , Camundongos Knockout , Proteínas Proto-Oncogênicas , RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA