Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chem Biodivers ; 21(4): e202301610, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38379194

RESUMO

BACKGROUND: SHP2 is highly expressed in a variety of cancer and has emerged as a potential target for cancer therapeutic agents. The identification of uncharged pTyr mimics is an important direction for the development of SHP2 orthosteric inhibitors. METHODS: Surface plasmon resonance analysis and cellular thermal shift assay were employed to verify the direct binding of LXQ-217 to SHP2. The inhibitory effect of LXQ-217 was characterized by linear Weaver-Burke enzyme kinetic analysis and BIOVIA Discovery Studio. The inhibition of tumor cell proliferation by LXQ-217 was characterized by cell viability assay, colony formation assays and hoechst 33258 staining. The inhibition of lung cancer proliferation in vivo was studied in nude mice after oral administration of LXQ-217. RESULTS: An electroneutral bromophenol derivative, LXQ-217, was identified as a competitive SHP2 inhibitor. LXQ-217 induced apoptosis and inhibited growth of human pulmonary epithelial cells by affecting the RAS-ERK and PI3 K-AKT signaling pathways. Long-term oral administration of LXQ-217 significantly inhibited the proliferation ability of lung cancer cells in nude mice. Moreover, mice administered LXQ-217 orally at high doses exhibited no mortality or significant changes in vital signs. CONCLUSIONS: Our findings on the uncharged orthosteric inhibitor provide a foundation for further development of a safe and effective anti-lung cancer drug.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Cinética , Neoplasias Pulmonares/tratamento farmacológico , Camundongos Nus , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Fenóis/síntese química , Fenóis/química , Fenóis/farmacologia
2.
J Eur Acad Dermatol Venereol ; 37(11): 2336-2348, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37326015

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a chronic and recurrent inflammatory skin disease characterized by severe pruritus and eczematous lesions. Heterogeneity of AD has been reported among different racial groups according to clinical, molecular and genetic differences. OBJECTIVE: This study aimed to conduct an in-depth transcriptome analysis of AD in Chinese population. METHODS: We performed single-cell RNA sequencing (scRNA-seq) analysis of skin biopsies from five Chinese adult patients with chronic AD and from four healthy controls, combined with multiplexed immunohistochemical analysis in whole-tissue skin biopsies. We explored the functions of IL19 in vitro. RESULTS: ScRNA-seq analysis was able to profile a total of 87,853 cells, with keratinocytes (KCs) in AD manifesting highly expressed keratinocyte activation and pro-inflammatory genes. KCs demonstrated a novel IL19+ IGFL1+ subpopulation that increased in AD lesions. Inflammatory cytokines IFNG, IL13, IL26 and IL22 were highly expressed in AD lesions. In vitro, IL19 directly downregulated KRT10 and LOR in HaCaT cells and activated HaCaT cells to produce TSLP. CONCLUSION: Abnormal proliferation and differentiation of keratinocytes contribute immensely to the pathogenesis of AD, whereas AD chronic lesions have witnessed significant presence of IL19+ IGFL1+ KCs, which may be involved in the disruption of the skin barrier, the connection and magnification of Th2 and Th17 inflammatory responses, and mediation of skin pruritus. Furthermore, progressive activation of multiple immune axes dominated by Type 2 inflammatory reaction occur in AD chronic lesions.


Assuntos
Dermatite Atópica , Adulto , Humanos , Dermatite Atópica/patologia , Análise da Expressão Gênica de Célula Única , Queratinócitos/patologia , Pele/patologia , Citocinas , Diferenciação Celular , Prurido/patologia
3.
World J Microbiol Biotechnol ; 39(4): 93, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36754899

RESUMO

Glucosamine (GlcN) is a natural amino monosaccharide in which a hydroxyl group of glucose is substituted by an amino group. It belongs to functional amino sugar compounds. In the traditional preparation process, GlcN and GlcNAc are obtained by hydrolyzing the cell wall of shrimp and crab. There are many potential problems with this method, such as geographical and seasonal restrictions on the supply of raw materials, serious environmental pollution and potential allergic reactions. Microbial fermentation has the advantages of mild conditions, low environmental pollution, high production intensity, and product safety. It can effectively solve the problem of shrimp and crab hydrolysis process, attracting many researchers to participate in the research of microbial fermentation production of GlcN. This paper mainly summarizes the research on strain construction method, metabolic pathway design and fermentation condition optimization in microbial fermentation, which has certain guiding significance for the further production, research and production of glucosamine.


Assuntos
Acetilglucosamina , Glucosamina , Fermentação , Glucose , Redes e Vias Metabólicas
4.
Environ Res ; 212(Pt E): 113570, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35671798

RESUMO

Converting renewable biomass into carbon-neutral biofuels is one of the most effective strategies to achieve zero carbon emissions and contribute to environmental protection. Microorganisms from the soil were primarily screened on the rhodamine B-plate for highly-active lipase producing strains and re-screened on a tributyrin-methanol plate using crude lipases produced from the initially screened-out strains. The lipase-producing strains with higher methanol-tolerant lipase were identified based on morphological characteristics and 16S rDNA sequencing. The crude lipases with much higher methanol-tolerance from screened top-4 strains, Stenotrophomonas maltophilia D18, Lysinibacillus fusiformis B23, Acinetobacter junii C69, and A. pittii C95 showed temperature optima of 25 °C, 35 °C, 30 °C, and 30 °C at pH 7.0, respectively, while their pH optima were 8.0, 7.0, 7.5, and 7.5 at each optimum temperature, respectively. After 24-h incubation, they retained more than 85% of their original activities in 25%, 15%, 20%, and 20% of methanol, respectively. They catalyzed the conversion of soybean oil into biodiesel by yields of 63.1%, 35.4%, 74.6%, and 78.5% after 24-h reactions, respectively. In conclusion, the as-isolated microorganisms producing high methanol-tolerant lipase are considered promising to provide robust biocatalyst for efficient biodiesel preparation and other industrial applications.


Assuntos
Biocombustíveis , Lipase , Carbono , Lipase/química , Lipase/genética , Metanol/química , Solo
5.
Arch Sex Behav ; 51(6): 2813-2821, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34791579

RESUMO

Life history theory proposes that it is adaptive for older people to shift investment away from reproductive effort (such as mating) to survivorship. However, it remains unclear whether the shift is also present at the psychological level. We investigated this question by comparing preferences for mate choice-relevant cues, sexually dimorphic facial images, between older (60 years and older, n = 92) and younger adults (18-40 years, n = 86). Results showed that older adults had significantly smaller preferences for sexually dimorphic faces of both sexes than young adults. Specifically, both older men and women showed no significant preferences for sexually dimorphic traits when judging opposite-sex faces, and smaller preferences for masculine male faces and feminine female faces when judging same-sex faces. Young adults generally showed strong preferences for masculine male faces and feminine female faces. In Study 2, we confirmed that the absent/reduced preferences in older adults for sexually dimorphic faces did not result from poor visual ability. The smaller preferences for sexually dimorphic facial cues in older adults compared to young adults suggest that older adults may shift away from mating-oriented psychology as they become less fertile.


Assuntos
Face , Masculinidade , Idoso , Comportamento de Escolha , Feminino , Humanos , Masculino , Caracteres Sexuais , Comportamento Sexual , Adulto Jovem
6.
Mar Drugs ; 20(5)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35621985

RESUMO

With the increasingly serious antimicrobial resistance, discovering novel antibiotics has grown impendency. The Antarctic abundant microbial resources, especially fungi, can produce unique bioactive compounds for adapting to the hostile environment. In this study, three Antarctic fungi, Chrysosporium sp. HSXSD-11-1, Cladosporium sp. HSXSD-12 and Acrostalagmus luteoalbus CH-6, were found to have the potential to produce antimicrobial compounds. Furthermore, the crude extracts of CH-6 displayed the strongest antimicrobial activities with 72.3-84.8% growth inhibition against C. albicans and Aeromonas salmonicida. The secondary metabolites of CH-6 were researched by bioactivity tracking combined with molecular networking and led to the isolation of two new α-pyrones, acrostalapyrones A (1) and B (2), along with one known analog (3), and three known indole diketopiperazines (4-6). The absolute configurations of 1 and 2 were identified through modified Mosher's method. Compounds 4 and 6 showed strong antimicrobial activities. Remarkably, the antibacterial activity of 6 against A. salmonicida displayed two times higher than that of the positive drug Ciprofloxacin. This is the first report to discover α-pyrones from the genus Acrostalagmus, and the significant antimicrobial activities of 4 and 6 against C. albicans and A. salmonicida. This study further demonstrates the great potential of Antarctic fungi in the development of new compounds and antibiotics.


Assuntos
Ascomicetos , Pironas , Regiões Antárticas , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Ascomicetos/metabolismo
7.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408869

RESUMO

Src homology 2 domain-containing protein tyrosine phosphatase 2 (SHP2) is a non-receptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene, which is involved in the RAS/MAPK cell signaling transduction process. SHP2 has been shown to contribute to the progression of various cancers and is emerging as an important target for anti-tumor drug research. However, past efforts to develop SHP2 inhibitors into drugs have been unsuccessful owing to the positively charged nature of the active site pocket tending to bind negatively charged groups that are usually non-drug-like. Here, a series of uncharged pyrazoline derivatives were designed and developed as new SHP2 inhibitors using a structure-based strategy. Compound 4o, which exhibited the strongest SHP2 inhibitory activity, bound directly to the catalytic domain of SHP2 in a competitive manner through multiple hydrogen bonds. Compound 4o affected the RAS/MAPK signaling pathway by inhibiting SHP2, and subsequently induced apoptosis and growth inhibition of HCT116 cells in vitro and in vivo. Notably, the oral administration of compound 4o in large doses showed no obvious toxicity. In summary, our findings provide a basis for the further development of compound 4o as a safe, effective and anti-tumor SHP2 inhibitor.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Domínio Catalítico , Inibidores Enzimáticos/farmacologia , Células HCT116 , Humanos , Neoplasias/tratamento farmacológico , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Transdução de Sinais
8.
Molecules ; 27(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35889303

RESUMO

The presence of nitrite (NO2-) in water and food leads to serious problems in public health and the environment. Therefore, it is important to develop a rapid and efficient method for the selective detection of NO2-. In this work, the synthesis and characterization of magnetic Fe3O4@SiO2-TbDPA nanoprobe have been carried out. The Fe3O4@SiO2-TbDPA aqueous solution exhibits a strong green emission. Due to the addition of various concentrations of NO2- (0-100 µM), the fluorescence intensity has been suppressed. The nanoprobe Fe3O4@SiO2-TbDPA exhibits excellent selectivity and sensitivity toward NO2- ions. Excellent linearity is obtained in the range of 5-80 µM with a detection limit of 1.03 µM. Furthermore, the presence of magnetic Fe3O4 nanoparticles in Fe3O4@SiO2-TbDPA nanospheres will also facilitate the effective separation of Fe3O4@SiO2-TbDPA from the aqueous solution. Our proposed strategy is expected to fabricate an organic-inorganic hybrid magnetic nanomaterial and can be used as an efficient sensor. It has been shown that this new strategy has numerous advantages, such as high stability, selectivity, and simplicity of operation. It demonstrates great potential for simple and convenient NO2- detection. It may expand to a variety of ranges in environmental monitoring and biomedical fields.


Assuntos
Elementos da Série dos Lantanídeos , Nanosferas , Nitritos , Dióxido de Nitrogênio , Dióxido de Silício
9.
World J Microbiol Biotechnol ; 38(11): 198, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35995888

RESUMO

Degradable polylactic acids (PLA) have been widely used in agriculture, textile, medicine and degradable plastics industry, and can completely replace petroleum-based plastics in the future. At present, polylactic acid was chemically synthesized by ring-opening polymerisation or the direct polycondensation of lactic acid, which inevitably leads to chemical and heavy metal catalyst pollution. The current research focus has gradually shifted to the development of recombinant industrial strains for the efficiently production of lactate-containing polyesters from renewable resources. This review summarizes various explorations of metabolic pathway optimization and production cost control in the industrialization of lactate-containing polyesters bio-production. In particular, the effects of key enzymes, including CoA transferase, polyhydroxyalkanoate synthase, and their mutants, culture conditions, low-cost carbon sources, and recombinant strains on the yield and composition of lactate-containing polyesters are summarized and discussed. Future prospects and challenges for the industrialization of lactate-containing polyesters are also pointed out.


Assuntos
Ácido Láctico , Poliésteres , Catálise , Ácido Láctico/metabolismo , Redes e Vias Metabólicas , Plásticos , Poliésteres/metabolismo
10.
Horm Behav ; 127: 104871, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33058835

RESUMO

Assessing dominance is important for effective social interactions, and prior research suggests that testosterone is associated with men's dominance perceptions. The present study tested for a causal effect of exogenous testosterone on men's sensitivity to vocal cues of other men's dominance, an important parameter in male-male competition across species. One hundred and thirty-nine Chinese men received a single dose (150 mg) of testosterone or placebo gel in a double-blind, placebo-controlled, between-participant design. Participants reported their own dominance and judged other men's dominance from voices. Men's dominance sensitivity was significantly weaker in the testosterone group compared to those in the placebo group. Moreover, men's dominance sensitivity was negatively associated with their self-reported dominance in our Chinese sample, consistent with findings from Western populations. These results indicate that exogenous testosterone has a causal effect in decreasing men's dominance sensitivity, consistent with the Challenge Hypothesis, suggesting that the fluctuation of testosterone concentration mediates individuals' behaviors. Additionally, the present study could motivate further work on vocal assessment in the context of competition in humans and other species.


Assuntos
Percepção Auditiva/efeitos dos fármacos , Sinais (Psicologia) , Predomínio Social , Testosterona/farmacologia , Estimulação Acústica , Adolescente , Adulto , China , Método Duplo-Cego , Humanos , Masculino , Motivação/efeitos dos fármacos , Placebos , Autoimagem , Comportamento Social , Testosterona/administração & dosagem , Voz , Adulto Jovem
11.
J Org Chem ; 86(9): 6983-6993, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33852316

RESUMO

The straightforward synthesis of α-fluoro-ß-arylalkenyl sulfones under transition-metal- and base-free conditions has been described, which displays broad functional group compatibility and high stereoselectivity. In particular, the strategy is also applied to the late-stage modification of complex natural products and drugs.


Assuntos
Preparações Farmacêuticas , Sulfonas , Íons , Estrutura Molecular , Sódio
12.
Molecules ; 26(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946466

RESUMO

The species Pseudogymnoascus is known as a psychrophilic pathogenic fungus which is ubiquitously distributed in Antarctica. While the studies of its secondary metabolites are infrequent. Systematic research of the metabolites of the Antarctic fungus Pseudogymnoascus sp. HSX2#-11 led to the isolation of one new pyridine derivative, 4-(2-methoxycarbonyl-ethyl)-pyridine-2-carboxylic acid methyl ester (1), together with one pyrimidine, thymine (2), and eight diketopiperazines, cyclo-(dehydroAla-l-Val) (3), cyclo-(dehydroAla-l-Ile) (4), cyclo-(dehydroAla-l-Leu) (5), cyclo-(dehydroAla-l-Phe) (6), cyclo-(l-Val-l-Phe) (7), cyclo-(l-Leu-l-Phe) (8), cyclo-(l-Trp-l-Ile) (9) and cyclo-(l-Trp-l-Phe) (10). The structures of these compounds were established by extensive spectroscopic investigation, as well as by detailed comparison with literature data. This is the first report to discover pyridine, pyrimidine and diketopiperazines from the genus of Pseudogymnoascus.


Assuntos
Ascomicetos/química , Compostos de Nitrogênio/análise , Regiões Antárticas , Ascomicetos/metabolismo , Produtos Biológicos/química , Estrutura Molecular , Compostos de Nitrogênio/química , Metabolismo Secundário
13.
Angew Chem Int Ed Engl ; 60(25): 13871-13876, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33851763

RESUMO

Palladium-catalyzed direct C-H activation of indole benzenoid moiety has been achieved in the past decade. However, palladium-catalyzed remote C-H activation of indoles is rare. Herein, we report a challenging palladium-catalyzed remote C4-H phosphonylation of indoles by a radical approach. The method provides access to a series of C4-phosphonylated indoles, including tryptophan and tryptophan-containing dipeptides, which are typically inaccessible by direct C4-H activation due to its heavy reliance on C3 directing groups. Notably, unexpected C6-phosphonylated indoles were obtained through blocking of the C4 position. The preliminary mechanistic studies indicated that the reactions may proceed via a C7-palladacycle/remote-activation process. Based on the strategy, examples of remote C4-H difluoromethylation with BrCF2 COOEt are also presented, suggesting that the strategy may offer a general blueprint for other cross-couplings.

14.
Mar Drugs ; 18(9)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957565

RESUMO

Gut microbiota has a critical role in metabolic diseases, including type 2 diabetes mellitus (T2DM). 3-bromo-4,5-bis(2,3-dibromo-4,5-dihydroxybenzyl)-1,2-benzenediol (BDB) is a natural bromophenol isolated from marine red alga Rhodomela confervoides. Our latest research showed that BDB could alleviate T2DM in diabetic BKS db mice. To find out whether BDB modulates the composition of the gut microbiota during T2DM treatment, 24 BKS db diabetic mice were randomly grouped to receive BDB (n = 6), metformin (n = 6), or the vehicle (n = 6) for 7 weeks in a blinded manner. Non-diabetic BKS mice (n = 6) were used as normal control. Diabetic mice treated with BDB or metformin demonstrated significant reductions in fasting blood glucose (FBG) levels compared with the vehicle-treated mice in the 7th week. Pyrosequencing of the V3-V4 regions of the 16S rRNA gene revealed the changes of gut microbiota in response to BDB treatment. The result demonstrated short-chain acid (SCFA) producing bacteria Lachnospiraceae and Bacteroides were found to be significantly more abundant in the BDB and metformin treated group than the vehicle-treatment diabetic group. Remarkably, at the genus levels, Akkermansia elevated significantly in the BDB-treatment group. Metagenomic results indicated that BDB may alleviate the metabolic disorder of diabetic mice by promoting propanoate metabolism and inhibiting starch and sucrose metabolism, amino sugar and nucleotide sugar metabolism. In conclusion, our study suggests that the anti-diabetic effect of BDB is closely related to the modulating structure of gut microbiota and the improvement of functional metabolism genes of intestinal microorganisms.


Assuntos
Bactérias/efeitos dos fármacos , Compostos Benzidrílicos/farmacologia , Glicemia/efeitos dos fármacos , Catecóis/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Metagenômica , Ribotipagem , Animais , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Compostos Benzidrílicos/isolamento & purificação , Biomarcadores/sangue , Glicemia/metabolismo , Catecóis/isolamento & purificação , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/microbiologia , Modelos Animais de Doenças , Microbioma Gastrointestinal/genética , Sequenciamento de Nucleotídeos em Larga Escala , Hipoglicemiantes/isolamento & purificação , Masculino , Camundongos Endogâmicos C57BL , Rodófitas/química
15.
Mikrochim Acta ; 187(6): 313, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32377952

RESUMO

A low-molecular-weight molecule (4-(2-(3-(dicyanomethyl)-5,5-dimethylcyclohex-1-en-1-yl)vinyl)phenyl-benzoate, DDPB) has been developed. The organic framework possesses very weak fluorescence . The feasibility of the signal transduction has been performed via fluorometric titrations in solution. DDPB gives rise to responses to carboxylesterase 2 (CES2) based on "off-on" responses. The red emission at 670 nm has been derived from the enzyme-induced hydrolysis of ester linkages, thus suppressing the intramolecular charge transfer (ICT) effect and thereby generating the fluorescent segment. The optical excitation window for this probe is extended to the visible light range (λex = 516 nm), and it will induce less harmful influence on biological substances. The detection limit for the measurement of CES2 concentration is as low as 2.33 mU/mL. The conventional studies concerning the activation process are generally performed within only a single liveing cell system. In this study, it is the first time that expression of carboxylesterase 2 in five kinds of cell lines (HeLa > C1498 > active T cell > Jurkat > unactive T cell) has been clarified by flow cytometry, Western blotting, and confocal microscopy analysis. The elucidation of CES2 and its variability in a variety of cells will open new ways for drug metabolism and disease prevention. Graphical abstract We reported a new "substrate-mediated light-on" strategy based on an ester bond cleavage reaction. Most of prepared nanomaterials and organic fluorophores possessed short wavelength emissions in the blue or green region which will not be difficult for cellular imaging. In this study, a novel functional molecule (DDPB) was considered as the substrate for CES2 and the optical "off-on" response was realized. DDPB was cell permeable and possessed very low cytotoxicity. Moreover, the identification of CES2 and their subtle changes in five different cells afforded the sequence for carboxylesterase-2 as Hela > C1498 > Active T cell > Jurkat > Unactive T cell. Inhibition studies showed that the hydrolysis of DDPB was effectively suppressed by bis-p-nitrophenyl phosphate and the cellular tracking results firmly supported this point. To our knowledge, the inter-individual variability for the CES2 expressions in five different cell lines has never been reported via the substrate induced optical changes.


Assuntos
Carboxilesterase/análise , Corantes Fluorescentes/química , Benzoatos/química , Benzoatos/efeitos da radiação , Carboxilesterase/antagonistas & inibidores , Carboxilesterase/metabolismo , Linhagem Celular Tumoral , Teoria da Densidade Funcional , Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes/efeitos da radiação , Humanos , Raios Infravermelhos , Microscopia Confocal , Microscopia de Fluorescência , Modelos Químicos , Nitrilas/química , Nitrilas/efeitos da radiação , Nitrofenóis/farmacologia
16.
Infect Immun ; 87(11)2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31451616

RESUMO

Spiroplasma eriocheiris causes great economic losses in the crustacean aquaculture industry. However, the mechanism of S. eriocheiris infecting host cells has been poorly studied. We established a Spiroplasma-infected Drosophila Schneider 2 (S2) cell model and investigated its pathogenic mechanism. First, S. eriocheiris induced S2 cell apoptosis and necrosis, seriously decreased cell viability, and increased the production of intracellular reactive oxygen species. Further research showed that S. eriocheiris can invade S2 cells, and the number of copies of intracellular spiroplasmas is sharply increased by 12 h postinfection. In addition, S. eriocheiris can cause S2 cells to form typical inclusion bodies and exhibit large vacuoles. Second, S. eriocheiris is internalized into S2 cells and strongly inhibited through blocking clathrin-mediated endocytosis using chlorpromazine and dynasore. Inhibitors of macropinocytosis, protein kinase C and myosin II, cause a significant reduction in S. eriocheiris in S2 cells. In contrast, disruption of cellular cholesterol by methyl-ß-cyclodextrin and nystatin has no effect on S. eriocheiris infection. These results suggest that the entry of S. eriocheiris into S2 cells relies on clathrin-dependent endocytosis and macropinocytosis, but not via the caveola-mediated endocytic pathway. In addition, the intracellular numbers of S. eriocheiris are dramatically reduced after S2 cells are treated with cytoskeleton-depolymerizing agents, including nocodazole and cytochalasin B. Thus, cellular infection by S. eriocheiris is related to microtubules and actin filaments. This research successfully shows for the first time that S. eriocheiris can invade Drosophila S2 cells and provides a process for S. eriocheiris infection.


Assuntos
Clatrina/fisiologia , Endocitose/fisiologia , Spiroplasma/fisiologia , Animais , Linhagem Celular , Drosophila , Espécies Reativas de Oxigênio
17.
Biochem Biophys Res Commun ; 513(1): 64-72, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30935688

RESUMO

Autophagy is an intracellular recycling and degradation process for regulating cell survival and drug resistance. Non-alcoholic steatohepatitis (NASH) is becoming a widespread disease in developing countries. However, the role of autophagy in NASH has not yet been fully elucidated. The present study determined that signal transducer and activator of transcription 3 (STAT3), in the inflammation and autophagy regulation, was the key in the progression of NASH. In NASH mouse and cell models, STAT3 mRNA and protein expressions were significantly increased, while the induction of autophagy was radically decreased. Furthermore, the effects of metformin on STAT3 expression level and NASH inflammation were investigated. The current results showed that metformin activated autophagy and decreased the mRNA expressions of inflammatory cytokines, IL-1ß, IL-6, and TNF-α via inhibition of the STAT3 mRNA and protein expression. The siRNA targeting STAT3 activated autophagy and inhibited the NASH inflammatory response by reducing the mRNA expressions of the inflammatory cytokines in vivo and in vitro. The correlation between autophagy and inflammation was also explored. Autophagy induced by metformin attenuated the inflammatory response. This phenomenon of inflammation reduction was partially restored by treatment with the autophagy inhibitor 3-methylindole (3-MA). In conclusion, this study demonstrated that metformin alleviated the inflammatory response in the liver and the hepatocyte of the NASH model via STAT3-mediated autophagy induction. This mechanism provides a strategy for targeting the NASH inflammatory response.


Assuntos
Autofagia/efeitos dos fármacos , Inflamação/tratamento farmacológico , Metformina/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Fator de Transcrição STAT3/imunologia , Animais , Inflamação/complicações , Inflamação/imunologia , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/imunologia
18.
Mol Pharm ; 16(5): 1839-1850, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30974944

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) is a widely confirmed target of the type 2 diabetes mellitus (T2DM) treatment. Herein, we reported a highly specific PTP1B inhibitor 2,2',3,3'-tetrabromo-4,4',5,5'-tetrahydroxydiphenylmethane (compound 1), which showed promising hypoglycemic activity in diabetic BKS db mice. With the IC50 value of 2.4 µM, compound 1 could directly bind to the catalytic pocket of PTP1B through a series of hydrogen bonds. Surface plasmon resonance analysis revealed that the target affinity [KD (equilibrium dissociation constant) value] of compound 1 binding to PTP1B was 2.90 µM. Moreover, compound 1 could activate the insulin signaling pathway in C2C12 skeletal muscle cells. We further evaluated the long-term effects of compound 1 in diabetic BKS db mice. Notably, oral administration of compound 1 significantly reduced the blood glucose levels of diabetic mice with increasing insulin sensitivity. In addition, the dyslipidemia of diabetic mice was also significantly improved by compound 1 gavage. The histological experiments showed that compound 1 treatment significantly ameliorated the disordered hepatic and pancreatic architecture and increased the glycogen content in the liver tissues as well as improved the insulin secretion function of pancreas. Taken together, our results manifested that the natural product compound 1 was a highly specific PTP1B inhibitor, which could activate insulin signaling pathway and ameliorate hyperglycemia and dyslipidemia in diabetic BKS db mice.


Assuntos
Compostos Benzidrílicos , Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Extratos Vegetais , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Animais , Masculino , Camundongos , Administração Oral , Compostos Benzidrílicos/administração & dosagem , Compostos Benzidrílicos/química , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/uso terapêutico , Domínio Catalítico , Linhagem Celular , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glicogênio/metabolismo , Ligação de Hidrogênio , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Concentração Inibidora 50 , Insulina/metabolismo , Resistência à Insulina , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Simulação de Acoplamento Molecular , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/isolamento & purificação , Rodófitas/química , Transdução de Sinais/efeitos dos fármacos
19.
Fish Shellfish Immunol ; 87: 534-545, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30721776

RESUMO

Enterocytozoon hepatopenaei (EHP) causes hepatopancreatic microsporidiosis (HPM) in shrimp. HPM is not normally associated with shrimp mortality, but is associated with significant growth retardation. In this study, the responses induced by EHP were investigated in hepatopancreas of shrimp Litopenaeus vannamei using proteomics and metabolomics. Among differential proteins identified, several (e.g., peritrophin-44-like protein, alpha2 macroglobulin isoform 2, prophenoloxidase-activating enzymes, ferritin, Rab11A and cathepsin C) were related to pathogen infection and host immunity. Other proteomic biomarkers (i.e., farnesoic acid o-methyltransferase, juvenile hormone esterase-like carboxylesterase 1 and ecdysteroid-regulated protein) resulted in a growth hormone disorder that prevented the shrimp from molting. Both proteomic KEGG pathway (e.g., "Glycolysis/gluconeogenesis" and "Glyoxylate and dicarboxylate metabolism") and metabolomic KEGG pathway (e.g., "Galactose metabolism" and "Biosynthesis of unsaturated fatty acids") data indicated that energy metabolism pathway was down-regulated in the hepatopancreas when infected by EHP. More importantly, the changes of hormone regulation and energy metabolism could provide much-needed insight into the underlying mechanisms of stunted growth in shrimp after EHP infection. Altogether, this study demonstrated that proteomics and metabolomics could provide an insightful view into the effects of microsporidial infection in the shrimp L. vannamei.


Assuntos
Enterocytozoon/fisiologia , Metaboloma/imunologia , Penaeidae/genética , Penaeidae/imunologia , Proteoma/imunologia , Animais , Hepatopâncreas/imunologia , Penaeidae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA