Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Theor Appl Genet ; 135(8): 2687-2698, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35701585

RESUMO

KEY MESSAGE: We mapped Rf18(t), a Restorer-of-fertility gene for wild abortive cytoplasmic male sterility from the japonica maintainer 'Nipponbare', to chromosome 1. The best candidate gene, LOC_Os01g71320, is predicted to encode hexokinase. Three-line hybrid rice obtained through cytoplasmic male sterility (CMS) has helped increase the yield of rice globally, and the wild abortive (WA)-type cytoplasm from wild rice (Oryza rufipogon Griff.) is used widely in three-line indica hybrids. The identification and mapping of the Restorer-of-fertility (Rf) genes in maintainer lines aided in uncovering the genetic basis of fertility restoration of WA-type CMS and the development of WA-type hybrids. In this study, we identified a new Rf gene, Rf18(t), for WA-type CMS from the japonica maintainer line 'Nipponbare' using a chromosome segment substitution line population derived from a cross between the indica line 9311 and 'Nipponbare.' Using a substitution mapping strategy, Rf18(t) was delimited to a 48-kb chromosomal region flanked by molecular marker loci ID01M28791 and ID01M28845 on chromosome 1. By comparative sequence analyses, we propose that LOC_Os01g71320 is the most likely candidate gene for Rf18(t), and it is predicted to encode hexokinase. Furthermore, Rf18(t) was found to function in fertility restoration probably by a posttranscriptional mechanism and its function is dependent on the genetic background of 9311. These results broaden our knowledge on the mechanism of fertility restoration of WA-type CMS lines and will facilitate the development of WA-type rice hybrids.


Assuntos
Oryza , Citoplasma/genética , Fertilidade/genética , Genes de Plantas , Hexoquinase/genética , Oryza/genética , Infertilidade das Plantas/genética
2.
Mol Breed ; 42(11): 70, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37313475

RESUMO

Panicle length (PL) is an important trait that determines panicle architecture and strongly affects grain yield and quality in rice. However, this trait has not been well characterized genetically, and its contribution to yield improvement is not well understood. Characterization of novel genes related to PL is of great significance for breeding high-yielding rice varieties. In our previous research, we identified qPL5, a quantitative trait locus for PL. In this study, we aimed to determine the exact position of qPL5 in the rice genome and identify the candidate gene. Through substitution mapping, we mapped qPL5 to a region of 21.86 kb flanked by the molecular marker loci STS5-99 and STS5-106 in which two candidate genes were predicted. By sequence analysis and relative expression analysis, LOC-Os05g41230, which putatively encodes a BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 precursor, was considered to be the most likely candidate gene for qPL5. In addition, we successfully developed a pair of near-isogenic lines (NILs) for qPL5 in different genetic backgrounds to evaluate the genetic effects of qPL5. Agronomic trait analysis of the NILs indicated that qPL5 positively contributes to plant height, grain number per panicle, panicle length, grain yield per plant, and flag leaf length, but it had no influence on heading date and grain-size-related traits. Therefore, qPL5 and the markers tightly linked to it should be available for molecular breeding of high-yielding varieties. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01339-z.

3.
Physiol Plant ; 170(1): 75-92, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32306425

RESUMO

Green leaf volatiles (GLVs) are released by plants when they encounter biotic stress, but their functions in the response to abiotic stress have not been determined. We have previously shown that exogenous application of (Z)-3-hexeny-1-yl acetate (Z-3-HAC), a kind of GLV, could alleviate salt stress in peanut (Arachis hypogaea L.) seedlings; however, notably little is known concerning the transcription regulation mechanisms of Z-3-HAC. In this study, we comprehensively characterized the transcriptomes and physiological indices of peanut seedlings exposed to Z-3-HAC and/or salt stress. Analysis of transcriptome data showed that 1420 genes were upregulated in the seedlings primed with Z-3-HAC under salt stress compared with the non-primed treatment. Interestingly, these genes were significantly enriched in the photosynthetic and ascorbate metabolism-related categories, as well as several plant hormone metabolism pathways. The physiological data revealed that Z-3-HAC significantly increased the net photosynthetic rate, SPAD value, plant height and shoot biomass compared with the non-primed peanut seedlings under salt stress. A significantly higher ratio of K+ :Na+ , reduced-to-oxidized glutathione (GSH:GSSG), and ascorbate-to-dehydroascorbate (AsA:DHA) were also observed for the plants primed with Z-3-HAC compared with the salt stress control. Meanwhile, Z-3-HAC significantly increased the activity of enzymes in the AsA-GSH cycle. Taken together, these results highlight the importance of Z-3-HAC in protecting peanut seedlings against salt stress by affecting photosynthesis, cellular redox homeostasis, K+ :Na+ homeostasis, and phytohormones.


Assuntos
Arachis , Fotossíntese , Acetatos , Glutationa , Homeostase , Oxirredução , Estresse Salino , Plântula , Estresse Fisiológico
4.
Rice (N Y) ; 15(1): 59, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36441296

RESUMO

Wild abortive-type cytoplasmic male sterility (WA-type CMS) has been exclusively used in hybrid seed production in indica rice cultivars, and fertility restoration in WA-type CMS is controlled by two major restorer genes, Rf3 and Rf4, through a sporophytic mechanism. However, the genetic mechanism underlying fertility restoration in WA-type CMS in japonica cultivars is poorly understood. In the present study, C418, a leading Chinsurah Boro II- (BT)-type japonica restorer line, showed partial restoration ability in WA-type japonica CMS lines. The 1:1 segregation ratio of partially fertile to sterile plants in a three-cross F1 population indicated that fertility restoration is controlled by one dominant gene. Gene mapping and sequencing results revealed that the target gene should be Rf4. The Rf4 gene restores fertility through a sporophytic mechanism, but the Rf4 pollen grains show a preferential fertilization in the testcross F1 plants. Furthermore, Rf4 was confirmed to have only a minor effect on fertility restoration in WA-type japonica CMS lines, and Rf gene dosage effects influenced the fertility restoration of WA-type CMS in japonica rice. The results of our study not only provide valuable insights into the complex genetic mechanisms underlying fertility restoration of WA-type CMS but will also facilitate the efficient utilization of WA-type CMS in japonica rice lines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA