RESUMO
BACKGROUND AND AIMS: HCC, particularly the multifocal HCC, features aggressive invasion and dismal prognosis. Locoregional treatments were often refractory to eliminate tumor tissue, resulting in residual tumor cells persisting and subsequent progression. Owing to problematic delivery to the tumor tissue, systemic therapies, such as lenvatinib (LEN) therapy, show limited clinical benefit in preventing residual tumor progression. Therefore, more advanced strategies for postablative multifocal HCC are urgently needed. APPROACH AND RESULTS: Motivated by the chemotaxis in tumor penetration of macrophages, we report a strategy named microinvasive ablation-guided macrophage hitchhiking for the targeted therapy toward HCC. In this study, the strategy leverages the natural inflammatory gradient induced by ablation to guide LEN-loaded macrophages toward tumor targeting, which increased by ~10-fold the delivery efficiency of LEN in postablative HCC in vivo. Microinvasive ablation-guided macrophage hitchhiking has demonstrated significant antitumor activity in various HCC models, including the hydrodynamic tail vein injection multifocal HCC mouse model and the orthotopic xenograft HCC rabbit model, systematically inhibiting residual tumor progression after ablation and prolonging the median survival of tumor-bearing mice. The potential antitumor mechanism was explored using techniques such as flow cytometry, ELISA, and immunohistochemistry. We found that the strategy significantly suppressed tumor cell proliferation and neovascularization, and such enhanced delivery of LEN stimulated systemic immune responses and induced durable immune memory. CONCLUSIONS: The macrophage hitchhiking strategy demonstrates exceptional therapeutic efficacy and biosafety across various species, offering promising prospects for clinical translation in controlling residual tumor progression and improving outcomes following HCC ablation.
RESUMO
The complex pathogenesis of lung ischemia-reperfusion injury (LIRI) was examined in a murine model, focusing on the role of pyroptosis and its exacerbation of lung injury. We specifically examined the levels and cellular localization of pyroptosis within the lung, which revealed alveolar macrophages as the primary site. The inhibition of pyroptosis by VX-765 reduced the severity of lung injury, underscoring its significant role in LIRI. Furthermore, the therapeutic potential of ß-hydroxybutyrate (ß-OHB) in ameliorating LIRI was examined. Modulation of ß-OHB levels was evaluated by ketone ester supplementation and 3-hydroxybutyrate dehydrogenase 1 (BDH-1) gene knockout, along with the manipulation of the SIRT1-FOXO3 signaling pathway using EX-527 and pCMV-SIRT1 plasmid transfection. This revealed that ß-OHB exerts lung-protective and anti-pyroptotic effects, which were mediated through the upregulation of SIRT1 and the enhancement of FOXO3 deacetylation, leading to decreased pyroptosis markers and lung injury. In addition, ß-OHB treatment of MH-S cells in vitro showed a concentration-dependent improvement in pyroptosis, linking its therapeutic benefits to specific cell mechanisms. Overall, this study highlights the significance of alveolar macrophage pyroptosis in the exacerbation of LIRI and indicates the potential of ß-OHB in mitigating injury by modulating the SIRT1-FOXO3 signaling pathway.
Assuntos
Ácido 3-Hidroxibutírico , Proteína Forkhead Box O3 , Macrófagos Alveolares , Camundongos Endogâmicos C57BL , Piroptose , Traumatismo por Reperfusão , Transdução de Sinais , Sirtuína 1 , Animais , Proteína Forkhead Box O3/metabolismo , Piroptose/efeitos dos fármacos , Sirtuína 1/metabolismo , Camundongos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Masculino , Ácido 3-Hidroxibutírico/farmacologia , Pulmão/metabolismo , Pulmão/patologia , Carbazóis/farmacologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/tratamento farmacológicoRESUMO
Kisspeptin signaling regulates energy homeostasis. Adiposity is the principal source and receiver of peripheral Kisspeptin, and adipose Kiss1 metastasis suppressor (Kiss1) gene expression is stimulated by exercise. However, whether the adipose Kiss1 gene regulates energy homeostasis and plays a role in adaptive alterations during prolonged exercise remains unknown. Here, we investigated the role of Kiss1 role in mice and adipose tissues and the adaptive changes it induces after exercise, using adipose-specific Kiss1 knockout (Kiss1adipoq-/-) and adeno-associated virus-induced adipose tissue Kiss1-overexpressing (Kiss1adipoq over) mice. We found that adipose-derived kisspeptin signal regulates lipid and glucose homeostasis to maintain systemic energy homeostasis, but in a sex-dependent manner, with more pronounced metabolic changes in female mice. Kiss1 regulated adaptive alterations of genes and proteins in tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OxPhos) pathways in female gWAT following prolonged aerobic exercise. We could further show that adipose Kiss1 deficiency leads to reduced peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α) protein content of soleus muscle and maximum oxygen uptake (VO2 max) of female mice after prolonged exercise. Therefore, adipose Kisspeptin may be a novel adipokine that increases organ sensitivity to glucose, lipids, and oxygen following exercise.
Assuntos
Tecido Adiposo , Metabolismo Energético , Homeostase , Kisspeptinas , Camundongos Knockout , Condicionamento Físico Animal , Animais , Kisspeptinas/metabolismo , Kisspeptinas/genética , Feminino , Camundongos , Condicionamento Físico Animal/fisiologia , Masculino , Tecido Adiposo/metabolismo , Camundongos Endogâmicos C57BL , Adaptação FisiológicaRESUMO
BACKGROUND: Prolonged electroencephalographic depression during surgery is associated with poor outcomes for patients. However, the published literature on electroencephalographic depression caused by a sudden increase in the partial pressure of end-tidal carbon dioxide (PETCO2) is lacking. CASE PRESENTATION: We report four patients who were scheduled for laparoscopic liver surgery under general anesthesia. During the process of EEG monitoring with Sedline, four patients experienced electroencephalographic depression closely after a sudden increase in PETCO2. The four patients showed that electroencephalographic depression mainly manifested as a slow in EEG frequency, a reduction in the amplitude and power of EEG, and a decrease in spectral edge frequency. Patient state index was elevated in three cases. CONCLUSIONS: To summarize, our patients showed EEG depression when PETCO2 suddenly increased, which suggests that clinical doctors should be alert to electroencephalographic depression when the PETCO2 abruptly increases. EEG monitoring devices should be applied in patients with possible hypercapnia. Anesthesiologists must comprehensively interpret the raw EEG, spectral edge frequency, and density spectral array data, in addition to patient sedation index values.
Assuntos
Dióxido de Carbono , Eletroencefalografia , Humanos , Eletroencefalografia/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Pressão Parcial , Anestesia Geral , Laparoscopia/métodos , HipercapniaRESUMO
BACKGROUND: Postoperative urinary retention (POUR) is a common complication of anorectal surgery. This study was to determine the incidence of POUR in anorectal surgery for benign anorectal diseases, identify its risk factors, and establish a nomogram for prediction of POUR. METHODS: A nested case-control study was conducted. The clinical data of patients were collected, and the incidence of POUR was analyzed. Univariate analysis was used to identify the risk factors associated with POUR, and multivariate logistic regression analysis was used to determine independent risk factors for POUR. A nomogram for the preoperative prediction of POUR using a logistic regression model was developed (n = 609). RESULTS: The incidence of POUR after anorectal surgery for benign anorectal diseases was 19.05%. The independent risk factors for POUR were: female (P = 0.007); male with benign prostatic hyperplasia (BPH) (P = 0.001); postoperative visual analogue scale (VAS) score > 6 (P = 0.002); patient-controlled epidural analgesia (PCEA) (P = 0.016); and a surgery time > 30 min (P = 0.039). In the nomogram, BPH is the most important factor affecting the occurrence of POUR, followed by a postoperative VAS score > 6, PCEA, surgery time > 30 min, and sex has the least influence. CONCLUSION: For patients undergoing anorectal surgery for benign anorectal diseases, preventive measures can be taken to reduce the risk of POUR, taking into account the following risk factors: female or male with BPH, severe postoperative pain, PCEA, and surgery time > 30 min. Furthermore, we developed and validated an easy-to-use nomogram for preoperative prediction of POUR in anorectal surgery for benign anorectal diseases. TRIAL REGISTRATION: China Clinical Trial Registry: ChiCTR2000039684, 05/11/2020.
Assuntos
Complicações Pós-Operatórias , Retenção Urinária , Humanos , Masculino , Retenção Urinária/epidemiologia , Retenção Urinária/etiologia , Estudos de Casos e Controles , Feminino , Fatores de Risco , Complicações Pós-Operatórias/epidemiologia , Pessoa de Meia-Idade , Doenças Retais/cirurgia , Idoso , Incidência , Adulto , Nomogramas , Hiperplasia Prostática/cirurgiaRESUMO
With the rapid development of novel energy vehicles, power generation, photovoltaics, and other industries, power electronic devices have gained considerable attention. Insulated-gate bipolar transistors (IGBTs) have been widely used in those fields. With the emergence of intelligent manufacturing concepts such as Germany's "Industry 4.0" and China's "Made in China 2025", conventional manufacturing which needs to be upgraded with higher efficiency and yield is rapidly pivoting toward digitalization and intelligence. The digital twin methodology has been extensively used in various industries for constructing virtual models of physical entities, facilitating real-time data interconnection to reduce costs and improve efficiency. This study proposes a modular intelligent IGBT production line based on the digital twin. Real-time data are transmitted from a physical line to a digital line for storage and analysis. The digital line is visualized, and an intelligent management platform containing multiple functions is developed. Additionally, a process simulation database is established to obtain the optimal process parameters. Numerous quality issues that can arise during each process of IGBT packaging are addressed using a problem-solving approach based on the digital twin methodology. Consequently, this digital-twin-based IGBT intelligent production line effectively enhances yield rates and efficiency. IGBT modules with various packaging forms such as ACF, ACE, and ACD are manufactured.
RESUMO
This paper presents an in-depth analysis of the oscillation phenomenon occurring in multi-chip parallel automotive-grade power modules under short-circuit conditions and investigates three suppression methods. We tested and analyzed two commercial automotive-grade power modules, one containing two chips and the other containing a single chip, and found that short-circuit gate oscillations were more likely to occur in multi-chip parallel packaged modules than in single-chip packaged modules. Through experimental and simulation analyses, we observed that gate oscillations were mainly caused by the interaction between internal parasitic parameters of the module and the external drive circuit, and we found that high drive resistance and low common emitter inductance between parallel chips could effectively suppress gate voltage oscillations. We also analyzed the two mainstream suppression schemes, increasing the drive gate resistance and placing the drive capacitors in parallel. Unfortunately, we found that these suppression schemes were not ideal solutions because both schemes changed the switching characteristics of the power module. As an alternative, we propose a simple and effective solution that involves adding parallel connections between the parallel chips. Simulation calculations showed that this optimized method reduced the emitter inductance between parallel chips in the upper bridge arm by about 30% and in the lower bridge arm by 35%. Through short-circuit experiments conducted at different DC bus voltages, it has been verified that the new optimized solution effectively resolves gate oscillation issues without affecting the switching characteristics of the power module.
RESUMO
Background: Resistance training (RT) and protein supplementation have beneficial effects on the human body. However, it is unknown if RT's health-promoting benefits are enhanced by food-borne protein, such as cheese supplements. This study investigated at how the body composition, lipid profile, muscle strength and intestinal microbiota changed following four weeks of RT combined with cheese supplementation. Methods: Thirty-five male and untrained adults were divided into 4 groups [control group (CON), low-dose group (LG), medium-dose group (MG), and high-dose group (HG)] and underwent a 4-week RT (3 times/week) in combination with cheese supplementation. Participants received 108 g (LG), 216 g (MG), or 324 g (HG) of cheese on the day of RT, and each serving (108 g) of cheese contained 6.7 g of food-borne protein. The RT program was a whole-body program with movements such as chest presses, leg presses, seated rowing, knee extensions and triceps pushdown. The exercise consisted of 3 sets of 8-12 repetitions at 70%RM, with a 120-s break in between. Body parameters (body composition, lipid profile and muscle strength) were assessed at baseline and after the 4 weeks of the intervention. The feces sample was taken every weekend. A two-way (group × time) mixed-design ANOVA was used to examine the body parameters. Independent one-way ANOVA was used to analyze the differences between groups in baseline characteristics and different values of each parameter. Results: HDL-C level was higher in MG than in LG. In comparison to LG, MG had lower levels of total cholesterol, low-density lipoprotein cholesterol, body weight, body mass index, body fat mass and body fat percentage. However, there was no difference in muscle strength between in the four groups. The abundance of Actinobacteria was higher in LG and Erysipelotrichaceae was lower in MG and HG. Conclusion: The findings suggest that cheese could be a readily available food-borne protein supplement to enhance the beneficial effects of RT on health. It may improve body composition and lipid profile by altering the proportion of intestinal microbiota. During the 4-week RT intervention, 13.4 g of foodborne protein in the form of cheese 3 times per week was the ideal dosage.
RESUMO
A practical method was developed for the convenient synthesis of isoxazole-fused tricyclic quinazoline alkaloids. This procedure accesses diverse isoxazole-fused tricyclic quinazoline alkaloids and their derivatives via intramolecular cycloaddition of methyl azaarenes with tert-butyl nitrite (TBN). In this method, TBN acts as the radical initiator and the source of N-O. Moreover, this protocol forms new C-N, C-C, and C-O bonds via sequence nitration and annulation in a one-pot process with broad substrate scope and functionalization of natural products.
RESUMO
BACKGROUND: Vigorous spontaneous effort can potentially worsen lung injury. This study hypothesized that the prone position would diminish a maldistribution of lung stress and inflation after diaphragmatic contraction and reduce spontaneous effort, resulting in less lung injury. METHODS: A severe acute respiratory distress syndrome model was established by depleting surfactant and injurious mechanical ventilation in 6 male pigs ("mechanism" protocol) and 12 male rabbits ("lung injury" protocol). In the mechanism protocol, regional inspiratory negative pleural pressure swing (intrabronchial balloon manometry) and the corresponding lung inflation (electrical impedance tomography) were measured with a combination of position (supine or prone) and positive end-expiratory pressure (high or low) matching the intensity of spontaneous effort. In the lung injury protocol, the intensities of spontaneous effort (esophageal manometry) and regional lung injury were compared in the supine position versus prone position. RESULTS: The mechanism protocol (pigs) found that in the prone position, there was no ventral-to-dorsal gradient in negative pleural pressure swing after diaphragmatic contraction, irrespective of the positive end-expiratory pressure level (-10.3 ± 3.3 cm H2O vs. -11.7 ± 2.4 cm H2O at low positive end-expiratory pressure, P = 0.115; -10.4 ± 3.4 cm H2O vs. -10.8 ± 2.3 cm H2O at high positive end-expiratory pressure, P = 0.715), achieving homogeneous inflation. In the supine position, however, spontaneous effort during low positive end-expiratory pressure had the largest ventral-to-dorsal gradient in negative pleural pressure swing (-9.8 ± 2.9 cm H2O vs. -18.1 ± 4.0 cm H2O, P < 0.001), causing dorsal overdistension. Higher positive end-expiratory pressure in the supine position reduced a ventral-to-dorsal gradient in negative pleural pressure swing, but it remained (-9.9 ± 2.8 cm H2O vs. -13.3 ± 2.3 cm H2O, P < 0.001). The lung injury protocol (rabbits) found that in the prone position, spontaneous effort was milder and lung injury was less without regional difference (lung myeloperoxidase activity in ventral vs. dorsal lung, 74.0 ± 30.9 µm · min-1 · mg-1 protein vs. 61.0 ± 23.0 µm · min-1 · mg-1 protein, P = 0.951). In the supine position, stronger spontaneous effort increased dorsal lung injury (lung myeloperoxidase activity in ventral vs. dorsal lung, 67.5 ± 38.1 µm · min-1 · mg-1 protein vs. 167.7 ± 65.5 µm · min-1 · mg-1 protein, P = 0.003). CONCLUSIONS: Prone position, independent of positive end-expiratory pressure levels, diminishes a maldistribution of lung stress and inflation imposed by spontaneous effort and mitigates spontaneous effort, resulting in less effort-dependent lung injury.
Assuntos
Lesão Pulmonar , Síndrome do Desconforto Respiratório , Animais , Lesão Pulmonar/prevenção & controle , Masculino , Peroxidase , Respiração com Pressão Positiva/métodos , Decúbito Ventral , Coelhos , Decúbito Dorsal , SuínosRESUMO
PURPOSE: We aimed to explore the influence of preoperative gamma knife treatment on the clinical effect of microsurgical resection of vestibular schwannoma. METHODS: The data of patients who underwent vestibular schwannoma resection in our hospital between November 2010 and December 2019 were retrospectively collected. According to the data collected retrospectively and the inclusion and exclusion criteria, we selected these patients and divided them into Group A (with preoperative gamma knife treatment) and Group B (without preoperative gamma knife treatment). The pre/postoperative clinical manifestations, neurological function grade, postoperative complications, tumor recurrence and increase were collected and compared between the two groups. RESULTS: There were 40 and 823 patients enrolled in Groups A and B, respectively. There were no significant differences in the general condition, tumor size and side, or neurological performance of the patients in those two groups before the operation. At the last follow-up, the number of patients with poor facial nerve function was 15 (39.5%) in Group A and 170 (20.7%) in Group B (P = 0.021 < 0.05). In Group A and Group B, disequilibrium occurred in 14 (36.8%) patients and 124 (15.1%) patients, respectively, after the operation (P = 0.012 < 0.05). Seven (17.5%) patients had pneumonia in Group A, and 21 (2.6%) patients had pneumonia in Group B (P = 0.04 < 0.05) after the operation. CONCLUSION: When a patient with vestibular schwannoma undergoes microsurgical surgery, the preoperative history with gamma knife treatment may make recovery from postoperative facial paralysis difficult for the patients, making them more prone to suffer from postoperative disequilibrium and postoperative pneumonia.
Assuntos
Neuroma Acústico , Radiocirurgia , Humanos , Neuroma Acústico/patologia , Estudos Retrospectivos , Resultado do Tratamento , Recidiva Local de Neoplasia/cirurgia , Radiocirurgia/efeitos adversos , Nervo Facial/patologiaRESUMO
Rationale: The physiological basis of lung protection and the impact of positive end-expiratory pressure (PEEP) during pronation in acute respiratory distress syndrome are not fully elucidated. Objectives: To compare pleural pressure (Ppl) gradient, ventilation distribution, and regional compliance between dependent and nondependent lungs, and investigate the effect of PEEP during supination and pronation. Methods: We used a two-hit model of lung injury (saline lavage and high-volume ventilation) in 14 mechanically ventilated pigs and studied supine and prone positions. Global and regional lung mechanics including Ppl and distribution of ventilation (electrical impedance tomography) were analyzed across PEEP steps from 20 to 3 cm H2O. Two pigs underwent computed tomography scans: tidal recruitment and hyperinflation were calculated. Measurements and Main Results: Pronation improved oxygenation, increased Ppl, thus decreasing transpulmonary pressure for any PEEP, and reduced the dorsal-ventral pleural pressure gradient at PEEP < 10 cm H2O. The distribution of ventilation was homogenized between dependent and nondependent while prone and was less dependent on the PEEP level than while supine. The highest regional compliance was achieved at different PEEP levels in dependent and nondependent regions in supine position (15 and 8 cm H2O), but for similar values in prone position (13 and 12 cm H2O). Tidal recruitment was more evenly distributed (dependent and nondependent), hyperinflation lower, and lungs cephalocaudally longer in the prone position. Conclusions: In this lung injury model, pronation reduces the vertical pleural pressure gradient and homogenizes regional ventilation and compliance between the dependent and nondependent regions. Homogenization is much less dependent on the PEEP level in prone than in supine positon.
Assuntos
Posicionamento do Paciente , Respiração com Pressão Positiva , Decúbito Ventral , Síndrome do Desconforto Respiratório/fisiopatologia , Síndrome do Desconforto Respiratório/terapia , Decúbito Dorsal , Animais , Modelos Animais de Doenças , Complacência Pulmonar/fisiologia , Lesão Pulmonar/complicações , Lesão Pulmonar/fisiopatologia , Lesão Pulmonar/terapia , Cavidade Pleural/fisiopatologia , Síndrome do Desconforto Respiratório/etiologia , Mecânica Respiratória/fisiologia , SuínosRESUMO
BACKGROUND: Quadratus lumborum block was recently proposed as an alternative technique for post-cesarean delivery analgesia. However, there is not a definite optimum concentration of local anesthetics. A biased coin design up-and-down method was used to explore the minimum effective concentration of ropivacaine in quadratus lumborum block for satisfactory analgesia after cesarean delivery. METHODS: Fifty-six patients weighing 60-80 kg after cesarean section and with ages between 18 and 40 years were recruited. For the posterior quadratus lumborum block, a volume of 25 ml of the assigned concentration of ropivacaine was injected bilaterally. The concentration administered to each patient depended on the response to the previous dose. The first patient received 0.25%. If a successful block was observed, the next patient was randomized to receive the same ropivacaine concentration (with a probability of 0.89) or 0.025% less (with a probability of 0.11). After any block failure, the concentration was always increased by 0.025% for the next. The study ended when 45 successful blocks were obtained. We defined effective quadratus lumborum block as a resting visual analog score ≤ 3 and the absence of a need for rescue anesthetics. RESULTS: The 90% minimum effective concentration of ropivacaine was 0.335% (95% CI 0.306 to 0.375%), and the 99% minimum effective concentration was 0.371% (95% CI 0.355 to 0.375%). The sufentanil consumption was 11 (11,13) and 24 (22,27) µg at 12 and 24 hours after quadratus lumborum block, respectively. CONCLUSIONS: The optimum dosage of ropivacaine is a 25 ml volume of 0.335% for quadratus lumborum block after cesarean delivery. TRIAL REGISTRATION: The study was registered in the Chinese Clinical Trial Registry (No. ChiCTR2000040415 ).
Assuntos
Analgesia , Cesárea , Humanos , Feminino , Gravidez , Adolescente , Adulto Jovem , Adulto , Ropivacaina , Dor Pós-Operatória/prevenção & controle , Analgésicos Opioides , Anestésicos Locais , Ultrassonografia de Intervenção/métodosRESUMO
Pulmonary fibrosis is a chronic progressive form of interstitial lung disease, characterized by the histopathological pattern of usual interstitial pneumonia. Apart from aberrant alterations of protein-coding genes, dysregulation of non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs (circRNAs), is crucial to the initiation and progression of pulmonary fibrosis. CircRNAs are single-stranded RNAs that form covalently closed loops without 5' caps and 3' tails. Different from canonical splicing of mRNA, they are produced from the back-splicing of precursor mRNAs and have unique biological functions, as well as potential biomedical implications. They function as important gene regulators through multiple actions, including sponging microRNAs and proteins, regulating transcription, and splicing, as well as protein-coding and translation in a cap-independent manner. This review comprehensively summarizes the alteration and functional role of circRNAs in pulmonary fibrosis, with a focus on the involvement of the circRNA in the context of cell-specific pathophysiology. In addition, we discuss the diagnostic and therapeutic potential of targeting circRNA and their regulatory pathway mediators, which may facilitate the translation of recent advances from bench to bedside in the future.
Assuntos
Fibrose Pulmonar Idiopática , MicroRNAs , Humanos , Fibrose Pulmonar Idiopática/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Splicing de RNA , RNA Circular/genética , RNA Mensageiro/genéticaRESUMO
In this study, density functional theory was employed to calculate the adsorption of polycaprolactone (PCL) by pure hydroxyapatite (HA), Zn-doped HA, and Ag-doped HA, and the interaction of PCL on the surface of HA (001) was simulated. The results show that there was significant electron transfer between the carbonyl O in PCL and the Zn, Ag, and Ca in HA, forming coordinate bonds. The binding energies of Ag-doped HA/PCL and Zn-doped HA/PCL were much higher than those of HA/PCL. HA doped with Ag had the highest binding energy to PCL. Therefore, we believe that when HA is doped with Ag atoms, its adsorption capacity for PCL can be increased. The results obtained in this study can be used as a guide for the development of HA/PCL bone graft composite material doped with appropriate metal ions to improve its adsorption capacity.
Assuntos
Durapatita , Polímeros , Poliésteres , ZincoRESUMO
Lung ischemia-reperfusion (IR) injury is a common clinical pathology associated with high mortality. Ferroptosis, a novel mode of cell death elicited by iron-dependent phospholipid peroxidation, has been implicated in ischemic events. Acyl-CoA synthetase long-chain family member 4 (ACSL4) is one of the main enzymes in pro-ferroptotic lipid metabolism. In this study, the involvement of ferroptotic death in different durations of reperfusion was evaluated by assessing the iron content, malondialdehyde, and glutathione levels, ferroptosis-related protein expression, and mitochondria morphology. The roles of ferroptosis-specific inhibitor, liproxastin-1 (Lip-1), and ACSL4 modulation in a preventive regimen were assessed in vivo and in vitro. The hallmarks of pulmonary function, such as histological lung injury score, wet/dry ratio, and oxygenation index, were evaluated as well. Results showed that lung IR increased the tissue iron content and lipid peroxidation accumulation, along with key protein (GPX4 and ACSL4) expression alteration during reperfusion. Pretreatment with Lip-1 inhibited ferroptosis and ameliorated lung IR-induced injury in animal and cell models. In addition, administering ACSL4 inhibitor rosiglitazone before ischemia diminished the ferroptotic damage in IR-injured lung tissue, consistent with the protective effect of ACSL4 knockdown on lung epithelial cells subjected to hypoxia/reoxygenation. Thus, this study delineated that IR-induced ferroptotic cell death in lung tissue and ACSL4 were correlated with this process. Inhibition of ferroptosis and ACSL4 mitigated the ferroptotic damage in IR-induced lung injury by reducing lipid peroxidation and increasing the glutathione and GPX4 levels.
Assuntos
Coenzima A Ligases/antagonistas & inibidores , Ferroptose/efeitos dos fármacos , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/metabolismo , Pulmão/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Rosiglitazona/farmacologia , Células A549 , Animais , Morte Celular/fisiologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Glutationa/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Traumatismo por Reperfusão/metabolismoRESUMO
Strain C17T, a novel strain belonging to the phylum Actinobacteria, was isolated from a thermal power plant in Yantai, Shandong Province, China. Cells of strain C17T were Gram stain positive, aerobic, pink, non-motile and round with neat edges, showing optimum growth at 28 °C. Phylogenetically, strain C17T was a member of the class Actinobacteria, order Mycobacteriales, family Gordoniaceae. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that the related strains were Williamsia faeni JCM 17784 T and Williamsia limnetica KCTC 19981 T with pairwise sequence similarity of 98.5% for both strains. According to the draft genome sequence, the DNA G + C content was 64.7%. The average amino acid identity (AAI), average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between genome sequences of strain C17T and the closest type strain W. faeni JCM 17784 T were 77.5, 77.9, and 20.7%, respectively. Predominant fatty acids were C16:0 (31.7%) and C18:1ω9c (26.8%). The major menaquinone was MK-9. The diagnostic phospholipids were phosphatidylethanolamine (PE), diphosphatidylglycerol (DPG), and phosphatidylinositol (PI). Therefore, the combined phenotypic, chemotaxonomic and phylogenetic data indicated that strain C17T was considered to represent a novel species of the genus Williamsia. Williamsia soli sp. nov. was proposed for strain C17T (= KCTC 49567 T = MCCC 1K04355T).
Assuntos
Actinobacteria , Solo , Actinobacteria/genética , Técnicas de Tipagem Bacteriana , China , DNA Bacteriano/genética , Ácidos Graxos , Fosfolipídeos , Filogenia , Centrais Elétricas , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do SoloRESUMO
BACKGROUND: The number of caesarean deliveries has been increasing. Although intrathecal morphine (ITM) can relieve pain and is widely applied in caesarean deliveries, it is associated with many side effects. Transversus abdominis plane block (TAPB), a new analgesic technology, has also began playing a certain role after caesarean delivery, with fewer adverse effects. This study mainly compares the analgesic and adverse effects of ITM and TAPB in caesarean delivery. METHODS: We systematically searched PubMed, Cochrane Library, EMBASE, and Web of Science, for randomised controlled trials (RCTs) published before 9 October, 2020 to compare the effects of ITM and TAPB. Primary outcome of the study was the pain score at rest 24 h after caesarean delivery, whereas the secondary outcomes were the pain score at movement 24 h after operation, postoperative nausea and vomiting (PONV), itching, and morphine consumption. For the outcome assessment, we conducted a sensitivity analysis. RESULT: Six RCTs involving 563 patients and meeting the study inclusion criteria were included in this study. Results indicated no significant difference in the pain score between ITM and TAPB at 24 h of rest or movement. The sensitivity analysis results indicated that the resting pain score (95% CI = - 1.27 to - 0.28; P = 0.002) and 24-h moving pain score (95% CI = - 1.8 to - 0.07; P = 0.03) of the ITM group were lower than those of the TAPB group. The consumption of morphine in the ITM group was lower than in the TAPB group (95% CI = 1.92 to 4.87; P < 0.00001); however, in terms of adverse reactions, the incidence of pruritus (95% CI = 1.17 to 8.26; P = 0.02) and PONV (95% CI = 1.92 to 4.87, P < 0.00001) in the ITM group was higher than in the TAPB group. CONCLUSION: Parturients in the ITM and TAPB groups exhibited similar analgesic effects. However, in the sensitivity analysis performed by eliminating the studies causing heterogeneity, the ITM group was found to have superior analgesic effects compared with the TAPB group, with less morphine consumption. Differently, the TAPB group displayed less side effects such as PONV. Therefore, TAPB is still a valuable analgesia option for patients who cannot use ITM for analgesia after caesarean delivery or those having a high risk of PONV. TRIAL REGISTRATION: Registration number: Registered on Prospero with the registration number of CRD42020210135 .
Assuntos
Cesárea/métodos , Morfina/administração & dosagem , Bloqueio Nervoso/métodos , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/efeitos adversos , Feminino , Humanos , Injeções Espinhais , Morfina/efeitos adversos , Bloqueio Nervoso/efeitos adversos , Dor Pós-Operatória/prevenção & controle , Náusea e Vômito Pós-Operatórios/epidemiologia , Gravidez , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
Alginate, a major acidic polysaccharide in brown algae, has attracted great attention as a promising carbon source for biorefinery systems. Alginate lyases, especially exo-type alginate lyase, play a critical role in the biorefinery process. Although a large number of alginate lyases have been characterized, few can efficiently degrade alginate comprised of mannuronate (M) and guluronate (G) at low temperatures by means of an exolytic mode. In this study, the gene of a new exo-alginate lyase-Alys1-with high activity (1350 U/mg) was cloned from a marine strain, Tamlana sp. s12. When sodium alginate was used as a substrate, the recombinant enzyme showed optimal activity at 35 °C and pH 7.0-8.0. Noticeably, recombinant Alys1 was unstable at temperatures above 30 °C and had a low melting temperature of 56.0 °C. SDS and EDTA significantly inhibit its activity. These data indicate that Alys1 is a cold-adapted enzyme. Moreover, the enzyme can depolymerize alginates polyM and polyG, and produce a monosaccharide as the minimal alginate oligosaccharide. Primary substrate preference tests and identification of the final oligosaccharide products demonstrated that Alys1 is a bifunctional alginate lyase and prefers M to G. These properties make Alys1 a valuable candidate in both basic research and industrial applications.
Assuntos
Alginatos/metabolismo , Proteínas de Bactérias/metabolismo , Temperatura Baixa , Flavobacteriaceae/enzimologia , Polissacarídeo-Liases/metabolismo , Stichopus/microbiologia , Aclimatação , Animais , Proteínas de Bactérias/genética , Catálise , Estabilidade Enzimática , Evolução Molecular , Flavobacteriaceae/genética , Concentração de Íons de Hidrogênio , Filogenia , Polissacarídeo-Liases/genética , Especificidade por SubstratoRESUMO
BACKGROUND: One-lung ventilation (OLV)-induced inflammation is a risk factor for acute lung injury that is responsible for 20% of postoperative pulmonary complications after lung resection. Inflammation is an important trigger for acute lung injury. Fatty acid amide hydrolase (FAAH) is the major enzyme that degrades the endocannabinoid arachidonoylethanolamine (AEA), an important regulator of inflammation, and its downstream metabolites such as arachidonic acid (AA) are also involved in inflammation. Importantly, AEA is also found in lung parenchyma. However, it remains unclear whether pharmacological inhibition of FAAH inhibitor using compounds such as URB937 can attenuate OLV-induced lung injury. MATERIALS AND METHODS: New Zealand white rabbits were anesthetized to establish a modified OLV-induced lung injury model. Twenty-four male rabbits were randomly divided into four groups (n = 6): TLV-S (2.5-h two-lung ventilation [TLV] + 1.5 mL/kg saline + 1-h TLV), OLV-S (2.5-h OLV + 1.5 mL/kg saline + 0.5-h OLV + 0.5-h TLV), U-OLV (1.5 mL/kg URB937 + 3.0-h OLV + 0.5-h TLV), and OLV-U (2.5-h OLV + 1.5 mL/kg URB937 + 0.5-h OLV + 0.5-h TLV). Arterial blood gases, lung wet/dry ratio, and lung injury score of the nonventilated lungs were measured. The levels of AEA, AA, prostaglandin I2 (PGI2), thromboxane A2 (TXA2), and leukotriene B4 (LTB4) in the nonventilated lung were also quantified. RESULTS: The arterial oxygenation index (PaO2/FiO2) decreased after 0.5-h OLV in the three OLV groups. The PaO2/FiO2 in the OLV-U group was better than that in the OLV-S and U-OLV groups and was accompanied with reductions in the wet/dry ratio and lung injury scores of the nonventilated lungs. The FAAH inhibitor URB937 administered not before but 2.5 h after OLV attenuated OLV-induced lung injury by increasing AEA levels and reducing the levels of downstream metabolites including AA, PGI2, TXA2, and LTB4. CONCLUSIONS: Posttreatment with the FAAH inhibitor URB937 attenuated OLV-induced lung injury in rabbits and was associated with increased AEA levels and decreased levels of AA and its downstream metabolites.