Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Reprod Dev ; 91(4): e23742, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644727

RESUMO

Preeclampsia (PE) is a common pregnancy complication with a high mortality rate. Abnormally activated endoplasmic reticulum stress (ERS) is believed to be responsible for the destruction of key placental cells-trophoblasts. Phenylbutyric acid (4-PBA), an ERS inhibitor, is involved in regulating the development of ERS-related diseases. At present, how 4-PBA affects trophoblasts and its mechanisms is still unclear. In this study, PE cell models were established by stimulating HTR-8/SVneo cells with hypoxia. To verify the underlying mechanisms of 4-PBA on PE, CCT020312, an activator of PERK, was also used. The results showed that 4-PBA restored hypoxia-induced trophoblast viability, inhibited HIF-1α protein expression, inflammation, and PERK/ATF-4/CHOP pathway. Hoechst 33342 staining and flow cytometry results confirmed that 4-PBA decreased hypoxia-induced apoptosis in trophoblasts. The results of the JC-1 analysis and apoptosis initiation enzyme activity assay also demonstrated that 4-PBA inhibited apoptosis related to the mitochondrial pathway. Furthermore, by detecting autophagy in trophoblasts, an increased number of autophagic vesicles, damaged mitochondria, enhanced dansylcadaverine fluorescence, enhanced levels of autophagy proteins Beclin-1, LC3II, and decreased p62 were seen in hypoxia-stimulated cells. These changes were reversed by 4-PBA. Furthermore, it was observed that CCT020312 reversed the effects of 4-PBA on the viability, apoptosis, and autophagosome number of hypoxia-induced trophoblasts. In summary, 4-PBA reduces autophagy and apoptosis via the PERK/ATF-4/CHOP pathway and mitochondrial pathway, thereby restoring the viability of hypoxic trophoblasts. These findings provide a solid evidence base for the use of 4-PBA in PE treatment and guide a new direction for improving the outcomes of patients with PE.


Assuntos
Fator 4 Ativador da Transcrição , Apoptose , Autofagia , Hipóxia Celular , Fenilbutiratos , Pré-Eclâmpsia , Fator de Transcrição CHOP , Trofoblastos , eIF-2 Quinase , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , Trofoblastos/patologia , Feminino , Humanos , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/patologia , Autofagia/efeitos dos fármacos , Fator de Transcrição CHOP/metabolismo , Apoptose/efeitos dos fármacos , Gravidez , Fenilbutiratos/farmacologia , eIF-2 Quinase/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Hipóxia Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Linhagem Celular
2.
Angew Chem Int Ed Engl ; 63(21): e202402831, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38532290

RESUMO

A double-fibril network of the photoactive layer morphology is recognized as an ideal structure facilitating exciton diffusion and charge carrier transport for high-performance organic solar cells (OSCs). However, in the layer-by-layer processed OSCs (LbL-OSCs), polymer donors and small molecule acceptors (SMAs) are separately deposited, and it is challenging to realize a fibril network of pure SMAs with the absence of tight interchain entanglement as polymers. In this work, crystalline small molecule donors (SMDs), named TDZ-3TR and SeDZ-3TR, were designed and introduced into the L8-BO acceptor solution, forcing the phase separation and molecular fibrilization. SeDZ-3TR showed higher crystallinity and lower miscibility with L8-BO acceptor than TDZ-3TR, enabling more driving force to favor the phase separation and better molecular fibrilization of L8-BO. On the other hand, two donor polymers of PM6 and D18 with different fibril widths and lengths were put together to optimize the fibril network of the donor layer. The simultaneously optimization of the acceptor and donor layers resulted in a more ideal double-fibril network of the photoactive layer and an impressive power conversion efficiency (PCE) of 19.38 % in LbL-OSCs.

3.
BMC Microbiol ; 23(1): 239, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644381

RESUMO

BACKGROUND: The ascomycetous heterothallic yeast Wickerhamomyces anomalus (WA) has received considerable attention and has been widely reported in the winemaking industry for its distinctive physiological traits and metabolic attributes. An increased concentration of ethanol during ethanol fermentation, however, causes ethanol stress (ES) on the yeast cells. Trehalose has been implicated in improving survival under various stress conditions in microorganisms. Herein, we determined the effects of trehalose supplementation on the survival, differentially expressed genes (DEGs), cellular morphology, and oxidative stress tolerance of WA in response to ES. RESULTS: The results indicated that trehalose improved the survival and anomalous surface and ultrastructural morphology of WA. Additionally, trehalose improved redox homeostasis by reducing the levels of reactive oxygen species (ROS) and inducing the activities of antioxidant enzymes. In addition, DEGs affected by the application of trehalose were enriched in these categories including in gene expression, protein synthesis, energy metabolism, and cell cycle pathways. Additionally, trehalose increased the content of intracellular malondialdehyde (MDA) and adenosine triphosphate. CONCLUSIONS: These results reveal the protective role of trehalose in ES mitigation and strengthen the possible uses of WA in the wine fermentation sector.


Assuntos
Saccharomycetales , Trealose , Trifosfato de Adenosina , Etanol
4.
BMC Microbiol ; 22(1): 275, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36380285

RESUMO

BACKGROUND: Wickerhamomyces anomalus (W. anomalus) is a kind of non-Saccharomyces yeast that has a variety of unique physiological characteristics and metabolic features and is widely used in many fields, such as food preservation, biomass energy, and aquaculture feed protein production. However, the mechanism of W. anomalus response to ethanol stress is still unclear, which greatly limits its application in the production of ethanol beverages and ethanol fuels. Therefore, we checked the effects of ethanol stress on the morphology, the growth, and differentially expressed genes (DEGs) and metabolites (DEMs) of W. anomalus. RESULTS: High concentrations of ethanol (9% ethanol and 12% ethanol) remarkably inhibited the growth of W. anomalus. Energy metabolism, amino acid metabolism, fatty acids metabolism, and nucleic acid metabolism were significantly influenced when exposing to 9% ethanol and 12% ethanolstress, which maybe universal for W. anomalus to response to different concentrations of ethanol stressl Furthermore, extracellular addition of aspartate, glutamate, and arginine significantly abated ethanol damage and improved the survival rate of W. anomalus. CONCLUSIONS: The results obtained in this study provide insights into the mechanisms involved in W. anomalus response to ethanol stress. Therefore, new strategies can be realized to improve the ethanol tolerance of W. anomalus through metabolic engineering.


Assuntos
Etanol , Saccharomycetales , Etanol/farmacologia , Etanol/metabolismo , Transcriptoma , Saccharomycetales/genética , Saccharomycetales/metabolismo , Leveduras
5.
Molecules ; 27(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35684527

RESUMO

Rosa roxburghii Tratt, a Rosaceae plant endemic to China, produces fruit with high nutritional and medicinal value. The effects of R. roxburghii must on the growth, nutrient composition, and antioxidant activity of Pleurotus ostreatus mycelia was investigated. We measured the mycelial growth rate, proximate composition, amino acid and crude polysaccharide content, and the antioxidant activity of the crude polysaccharides of P. ostreatus mycelia cultivated under different concentrations of R. roxburghii must (2%, 4%, and 8%, v/v). Low concentrations of R. roxburghii must (2% and 4%) promoted mycelial growth, while a high concentration (8%) inhibited mycelial growth. Low concentrations of R. roxburghii must had no significant effects on the soluble substances, fat, ash, and crude fiber in P. ostreatus mycelia, but significantly increased the crude protein and total amino acid contents (p < 0.05). The addition of R. roxburghii must at low concentrations significantly increased the crude polysaccharide content in mycelia (p < 0.05) but had no impact on the scavenging of hydroxyl radicals and 2,2-diphenyl-1-picrylhydrazyl (DPPH). Therefore, R. roxburghii must at low concentration can be used as a substrate for P. ostreatus cultivation to increase the protein and polysaccharide contents in mycelia.


Assuntos
Pleurotus , Rosa , Aminoácidos/metabolismo , Antioxidantes/química , Carboidratos da Dieta/metabolismo , Nutrientes , Polissacarídeos/química , Rosa/química
6.
J Org Chem ; 86(2): 2028-2035, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33397102

RESUMO

We report a novel strategy to prepare valuable nitriles and ketones through the conversion of esters under metal-free conditions. By using the I2/PCl3 system, various substrates including aliphatic and aromatic esters could react with acetonitrile and arenes to afford the desired products in good to excellent yields. This method is compatible with a number of functional groups and provides a simple and practical approach for the synthesis of nitrile compounds and aryl ketones.

7.
J Bioenerg Biomembr ; 52(5): 343-354, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32929607

RESUMO

Cell adhesion molecule 1 (CADM1) is frequently silenced in lung, prostate, liver, stomach, pancreatic and breast carcinomas and other forms of human carcinomas. However, it is unclear regarding the role of CADM1 in irritable bowel syndrome with diarrhoea (IBS-D) that is the most common gastrointestinal diagnosis and may contribute to impaired intestinal barrier function. The aim of the present study is to explore the potential mechanism of CADM1 in regulating intestinal barrier function in IBS-D. A rat model with IBS-D induced by the combination method of mother-infant separation, acetic acid and restraint stress was initially established. The defecation frequency, faecal water content (FWC), total intestinal permeability, sIgA, endotoxin, D-lactic acid and diamine oxidase (DAO) were then measured. Next, positive expression of CADM1 protein was detected in distal colonic tissue of rats by immunohistochemistry. The expression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in distal colonic mucosa, CADM1, Janus kinase 1 (JAK1), STAT3, p-JAK1, p-STAT3, Claudin-1and Claudin-2 were evaluated using ELISA, RT-qPCR and western blot analysis. IBS-D rats exhibited low CADM1 expression and activated STAT3 signaling pathway. Overexpression of CADM1 in rats was shown to increase Claudin-1 expression, while decreasing expression of STAT3, Claudin-2, TNF-α and IL-6. In addition, silencing of CADM1 or inhibition of the STAT3 signaling pathway was demonstrated to improve the intestinal barrier function. Our study provides evidence that CADM1 can potentially improve intestinal barrier function in rats with IBS-D by inhibiting the STAT3 signaling pathway.


Assuntos
Moléculas de Adesão Celular/metabolismo , Imunoglobulinas/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Estudos de Casos e Controles , Moléculas de Adesão Celular/biossíntese , Moléculas de Adesão Celular/genética , Modelos Animais de Doenças , Feminino , Células HEK293 , Células HeLa , Humanos , Imunoglobulinas/biossíntese , Imunoglobulinas/genética , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/antagonistas & inibidores , Transdução de Sinais
8.
BMC Infect Dis ; 20(1): 317, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32354369

RESUMO

BACKGROUND: The novel coronavirus disease 2019 (COVID-19) outbreak started in Wuhan, Hubei, China since Dec 2019 and cases of infection have been continuously reported in various countries. It is now clear that the SARS-COV-2 coronavirus is transmissible from human to human. Nucleic acid detection is considered as the gold standard for the diagnosis of COVID-19. In this case report, we describe our experience in detection of SARS-COV-2 from a confirmed patient using nucleic acid test of bronchoalveolar-lavage fluid (BALF) samples but not nasopharyngeal swabs. CASE PRESENTATION: We present a case of severely ill SARS-COV-2 infected 46-year-old man with fever, coughing and chest tightness. We performed viral detection using his BALF samples and imaging method (CT) for confirmation. The patient received combination of interferonalfa-1b and ribavirin, lopinavir and ritonavir for antiviral treatment at different stages. Other medication was also given to him in combination for anti-inflammation, intestinal microbial regulation, phlegm elimination, liver protection and pulmonary fibrosis prevention purposes. We provided oxygen supply to him using BIPAP ventilator and high-flow humidification oxygen therapy instrument to facilitate respiration. The patient was cured and discharged. CONCLUSION: This case report described an effective supportive medication scheme to treat SARS-COV-2 infected patient and emphasized the necessity of detection of the viral genome using BALF samples and its significance in the diagnosis and prognosis of the disease.


Assuntos
Líquido da Lavagem Broncoalveolar/virologia , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , RNA Viral/isolamento & purificação , Antivirais/uso terapêutico , Betacoronavirus , COVID-19 , China , Infecções por Coronavirus/tratamento farmacológico , Tosse/etiologia , Febre/etiologia , Humanos , Pulmão/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Nasofaringe/virologia , Pandemias , Pneumonia Viral/tratamento farmacológico , SARS-CoV-2
9.
Sensors (Basel) ; 19(13)2019 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-31284622

RESUMO

This paper investigates mobile relaying in wireless powered communication networks (WPCN), where an unmanned aerial vehicle (UAV) is employed to help information delivery from multiple sources to destination with communication channels severely blocked. The sources are low-power without energy supply. To support information transmission, the UAV acts as a hybrid access point (AP) to provide wireless power transfer (WPT) and information reception for sources. We set the issue of system throughput maximization as the optimization problem. On the one hand, the system is subject to the information causality constraint due to the dependent processes of information reception and transmission for the UAV. On the other hand, the sources are constrained by a so-called neutrality constraints due to the dependent processes of energy harvesting and energy consumption. In addition, we take account of the access delay issue of all ground nodes. Specifically, two paradigms of delay-tolerant case and delay-sensitive case are presented. However, the formulated problem including optimizations for time slot scheduling, power allocation and UAV trajectory is non-convex and thus is difficult to obtain its optimal solution. To tackle this problem, we apply the successive convex approximation (SCA) technique and propose an iterative algorithm by which a suboptimal solution can be achieved. Simulation results validate our proposed design, and show that the obtained suboptimal solution is high-quality, as compared to benchmark scheme.

10.
Langmuir ; 34(26): 7681-7689, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29860845

RESUMO

Understanding the interaction of graphene with cell membranes is crucial to the development of graphene-based biological applications and the management of graphene safety issues. To help reveal the key factors controlling the interaction between graphene and cell membranes, here we adopt the dissipative particle dynamics method to analyze the evolution of interaction force and free energy as the graphene-covered atomic force microscopy (AFM) probe indents across a lipid bilayer. The simulation results show that the graphene-covered AFM probe can cause severe deformation of the cell membrane which drives the lipid molecule to adsorb and diffuse at the surface of graphene. The breakthrough force and free energy are calculated to study the effects of the tip shape, size, and surface hydrophobicity on the piercing behaviors of graphene-covered AFM. In addition, the deformation of cell membrane can decrease the dependency of the breakthrough force on the tip shape. The analysis of surface functionalization suggests that the horizontal patterns on graphene can change the preferred orientation in the penetration process, but the vertical patterns on graphene may disrupt the cell membrane. What's more, the bending stiffness of graphene has little influence on the penetration process as graphene pierces into the cell membrane. These results provide useful guidelines for the molecular design of graphene materials with controllable cell penetrability.

11.
Nanotechnology ; 29(10): 105501, 2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29271362

RESUMO

In the present work, a thermoresponsive nanorattle with a Ag nanoparticle (NP) core (one catalyst in the nanorattle), and a poly(N-isopropylacrylamide) shell was developed. An imidazole group was grafted on the polymer shell by copolymerization as the other catalyst. Owing to the catalytic activities of the imidazole group and Ag NP with regards to hydrolysis and reduction, respectively, this nanorattle exhibited tandem-reaction catalytic abilities. In addition, because of the shrinkage of the poly(N-isopropylacrylamide) shell at high temperatures, the tandem reaction could be controlled to stop at the first reaction step. That is to say, only the hydrolysis reaction was catalyzed by the imidazole group being grafted on the surface of the shell. The reduction step in the tandem reaction catalyzed by the Ag particle, however, was switched off by the shrinkage of the poly(N-isopropylacrylamide) shell. This protocol opens up an opportunity to develop controllable catalysts for complicated chemical processes.

12.
Nanotechnology ; 29(22): 225501, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29480812

RESUMO

The present work was aimed at preparing a thermosensitive nanoreactor system which could adjust its dispersion/aggregation status according to external temperature change to achieve the switchable catalysis. The mesoporous silica nanoparticle (MSNP) was selected as the framework material of the nanoreactor, and Ag nanoparticles were encapsulated in the mesoporous silica by an in situ reaction. Dodecyl groups were introduced onto MSNP surface, which could transform reversibly between complexation and disassociation with α-cyclodextrin (CD) cavity upon temperature change. It was found that the nanoreactors aggregated and the catalysis was effectively switched 'off' in the presence of CD polymers at low temperature (20 °C). However, when the temperature increased to 50 °C, the nanoreactors redispersed and catalysis successfully switched 'on'.

13.
Cancer Sci ; 108(3): 408-418, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28370854

RESUMO

microRNAs play key roles during various crucial cell processes such as proliferation, migration, invasion and apoptosis. Also, microRNAs have been shown to possess oncogenic and tumor-suppressive functions in human cancers. Here, we describe the regulation and function of miR-149 in colorectal cancer cell lines. miR-149 expression patterns were detected in human colorectal cell lines and tissue samples, and then focused on its role in regulation of cell growth, migration, invasion, and its target gene identification. Furthermore, the function of the target gene of miR-149 was analyzed in vitro and in vivo. miR-149 expression was downregulated in human colorectal cancer HCT116 and SW620 cell lines compared to the normal colon epithelial NCM460 cell line using quantitative real-time polymerase chain reaction methods. Further studies indicated that introduction of miR-149 was able to suppress cell migration and invasion. Then, EphB3 was identified as a direct target gene of miR-149 in colorectal cancer cells. Moreover, experiments in vitro showed that knockdown expression of EphB3 could suppress cell proliferation and invasion, and ectopic expression of EphB3 restored the phenotypes of CRC cell lines transfected with miR149. In addition, silencing of EphB3 significantly affected cycle progression distribution and increased apoptosis in CRC cell lines. Finally, in vivo results demonstrated that knockdown of EphB3 by siRNA inhibited tumor growth. In conclusion,the important role of miR-149 in colorectal cancer progression suggesting that miR-149 may serve as a therapeutic target for colorectal cancer treatment.


Assuntos
Movimento Celular/genética , Proliferação de Células/genética , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Receptor EphB3/metabolismo , Animais , Apoptose/genética , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Regulação para Baixo , Feminino , Células HCT116 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/genética , Transplante de Neoplasias , Interferência de RNA , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor EphB3/genética , Transplante Heterólogo
14.
Phys Chem Chem Phys ; 19(30): 20049-20056, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28722730

RESUMO

In this paper, the in-plane torsional properties of two dimensional nanomaterials are revealed to be tunable by surface functionalization using molecular dynamics simulations. The torsional strengths of both graphene and graphyne under circular shearing are found to first decrease and then increase anomalously with the increase of the hydrogenation ratio. The minimum strength of such U-shaped strength evolution appears at different hydrogenation ratios H for graphene (H = 50%) and graphyne (H = 70%), demonstrating a correlation between hydrogenation and the unit lattices of 2D nanomaterials. By studying the torsional characteristics of a graphene annulus with varying outer-to-inner boundary radius ratios, the anomalous increase of torsional strength at a high hydrogenation ratio is revealed to be the result of wrinkling deformation as well as chemical bond hybridization. Further analyses of the local stress distribution are carried out for understanding the mechanism of surface hydrogenation tuned in-plane torsional strength of graphene and graphyne. Torsional strength of the graphene annulus with an elliptical outer boundary also shows a U-shaped evolution with hydrogenation ratio, while the shape effect of the graphene annulus can smooth the change of the torsional characteristics with hydrogenation. Our results provide novel insights into the development of 2D nanomaterial-based annular devices.

15.
Proc Natl Acad Sci U S A ; 110(30): 12295-300, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23840061

RESUMO

Understanding and controlling the interaction of graphene-based materials with cell membranes is key to the development of graphene-enabled biomedical technologies and to the management of graphene health and safety issues. Very little is known about the fundamental behavior of cell membranes exposed to ultrathin 2D synthetic materials. Here we investigate the interactions of graphene and few-layer graphene (FLG) microsheets with three cell types and with model lipid bilayers by combining coarse-grained molecular dynamics (MD), all-atom MD, analytical modeling, confocal fluorescence imaging, and electron microscopic imaging. The imaging experiments show edge-first uptake and complete internalization for a range of FLG samples of 0.5- to 10-µm lateral dimension. In contrast, the simulations show large energy barriers relative to kBT for membrane penetration by model graphene or FLG microsheets of similar size. More detailed simulations resolve this paradox by showing that entry is initiated at corners or asperities that are abundant along the irregular edges of fabricated graphene materials. Local piercing by these sharp protrusions initiates membrane propagation along the extended graphene edge and thus avoids the high energy barrier calculated in simple idealized MD simulations. We propose that this mechanism allows cellular uptake of even large multilayer sheets of micrometer-scale lateral dimension, which is consistent with our multimodal bioimaging results for primary human keratinocytes, human lung epithelial cells, and murine macrophages.


Assuntos
Grafite , Animais , Células Cultivadas , Proteínas Filagrinas , Humanos , Bicamadas Lipídicas , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Simulação de Dinâmica Molecular
16.
Cell Physiol Biochem ; 36(3): 1116-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26113202

RESUMO

AIMS: Previous studies have revealed that the increased shedding of syncytiotrophoblast extracellular vesicles (STBM) may lead to preeclampsia (PE). We aimed to identify the proteins carried by STBM and their potential pathological roles in early-onset severe PE. METHODS: In this study, we performed a differential proteomic analysis of STBM from early-onset severe PE patients, using iTRAQ isobaric tags and 2D nano LC-MS/MS. STBM were generated by the in vitro explant culture method, and then verified by electron microscopy and western blot analysis. RESULTS: A total of 18 533 unique peptides and 3 317 proteins were identified, 3 292 proteins were quantified. We identified 194 differentially expressed proteins in STBM from early-onset severe PE patients, 122 proteins were up-regulated and 72 proteins were down-regulated. Further bioinformatics analysis revealed that mitochondrion, transmembrane transport and transmembrane transporter activity were the most abundant categories in gene ontology (GO) annotation. Glycolysis/ gluconeogenesis, citrate cycle, fatty acid elongation, steroid hormone biosynthesis and oxidative phosphorylation were the five significantly represented pathways. Four differentially expressed proteins (siglec-6, calnexin, CD63 and S100-A8) related to inflammation, coagulation or immunoregulation were independently verified using western blot. CONCLUSIONS: The identification of key proteins carried by STBM may serve not only as a basis for better understanding and further exploring the etiology and pathogenesis of PE, but also as potential biomarkers and in providing targets for future therapy in PE, especially in early-onset severe PE(sPE).


Assuntos
Vesículas Extracelulares/química , Pré-Eclâmpsia/genética , Proteoma/genética , Trofoblastos/metabolismo , Adulto , Técnicas de Cultura de Células , Ciclo do Ácido Cítrico/genética , Ácidos Graxos/biossíntese , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Gluconeogênese/genética , Glicólise/genética , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Anotação de Sequência Molecular , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Gravidez , Proteoma/metabolismo , Índice de Gravidade de Doença , Coloração e Rotulagem , Espectrometria de Massas em Tandem , Fatores de Tempo , Trofoblastos/patologia
17.
Zhonghua Yi Xue Za Zhi ; 94(11): 852-4, 2014 Mar 25.
Artigo em Zh | MEDLINE | ID: mdl-24854755

RESUMO

OBJECTIVE: To explore the feasibility, advantages and clinical value of gasless abdominal-wall lifting laparoscopic myomectomy with 5 mm laparoscope and 2 abdominal holes (1.5-hole-gasless-laparoscopic myomectomy). METHODS: A total of 90 cases of uterine fibroids were randomly divided into 2 groups. Lifting gasless group (n = 46) underwent gasless abdominal-wall lifting laparoscopic myomectomy with 5 mm laparoscope and 2 abdominal holes, and pneumoperitoneum group (n = 44) pneumoperitoneum laparoscopic myomectomy. The operative duration, blood loss volume, average time of single-myoma-removal, intestinal function recovery and hospital stay of both groups were compared. RESULTS: The operative duration, blood loss volume and average time of single-myoma-removal of lifting gasless group were respectively significantly less than those of pneumoperitoneum group (P < 0.01) . The postoperative intestinal function recovery and postoperative hospital stay had no significant difference between two groups (P > 0.05). Three cases of pneumoperitoneum group were converted successfully into myomectomy with traditional 3-hole gasless abdominal wall lifting laparoscopy because of large fibroids in uterine isthmus. A total of 12 newly discovered myomas, not pre-detected ultrasonically, were removed in 10 cases of lifting gasless group. CONCLUSION: 1.5-hole-gasless-laparoscopic myomectomy, like traditional gasless laparoscopy, may avoid the complications of laparoscopic CO2 pneumoperitoneum. The smaller laparoscope-hole and sole operating hole make this maneuver a safe, easy and mini-invasive procedure. It is more suitable for clinical application and popularity in primary care.


Assuntos
Laparoscopia/métodos , Leiomioma/cirurgia , Neoplasias Uterinas/cirurgia , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Pneumoperitônio Artificial/métodos , Resultado do Tratamento
18.
PLoS One ; 19(4): e0300502, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635515

RESUMO

Fire and smoke detection is crucial for the safe mining of coal energy, but previous fire-smoke detection models did not strike a perfect balance between complexity and accuracy, which makes it difficult to deploy efficient fire-smoke detection in coal mines with limited computational resources. Therefore, we improve the current advanced object detection model YOLOv8s based on two core ideas: (1) we reduce the model computational complexity and ensure real-time detection by applying faster convolutions to the backbone and neck parts; (2) to strengthen the model's detection accuracy, we integrate attention mechanisms into both the backbone and head components. In addition, we improve the model's generalization capacity by augmenting the data. Our method has 23.0% and 26.4% fewer parameters and FLOPs (Floating-Point Operations) than YOLOv8s, which means that we have effectively reduced the computational complexity. Our model also achieves a mAP (mean Average Precision) of 91.0%, which is 2.5% higher than the baseline model. These results show that our method can improve the detection accuracy while reducing complexity, making it more suitable for real-time fire-smoke detection in resource-constrained environments.


Assuntos
Algoritmos , Fumaça , Carvão Mineral , Generalização Psicológica
19.
Adv Mater ; 36(3): e2306990, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37766648

RESUMO

The limited selection of wide bandgap polymer donors for all-polymer solar cells (all-PSCs) is a bottleneck problem restricting their further development and remains poorly studied. Herein, a new wide bandgap polymer, namely PBBTz-Cl, is designed and synthesized by bridging the benzobisthiazole acceptor block and chlorinated benzodithiophene donor block with thiophene units for application as an electron donor in all-PSCs. PBBTz-Cl not only possesses wide bandgap and deep energy levels but also displays strong absorption, high-planar structure, and good crystallinity, making it a promising candidate for application as a polymer donor in organic solar cells. When paired with the narrow bandgap polymer acceptor PY-IT, a fibril-like morphology forms, which facilitates exciton dissociation and charge transport, contributing to a power conversion efficiency (PCE) of 17.15% of the corresponding all-PSCs. Moreover, when introducing another crystalline polymer acceptor BTP-2T2F into the PBBTz-Cl:PY-IT host blend, the absorption ditch in the range of 600-750 nm is filled, and the blend morphology is further optimized with the trap density reducing. As a result, the ternary blend all-PSCs achieve a significantly improved PCE of 18.60%, which is among the highest values for all-PSCs to date.

20.
Adv Sci (Weinh) ; 11(23): e2401405, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38528662

RESUMO

Volatile solid additives have attracted increasing attention in optimizing the morphology and improving the performance of currently dominated non-fullerene acceptor-based organic solar cells (OSCs). However, the underlying principles governing the rational design of volatile solid additives remain elusive. Herein, a series of efficient volatile solid additives are successfully developed by the crossbreeding effect of chalcogenation and iodination for optimizing the morphology and improving the photovoltaic performances of OSCs. Five benzene derivatives of 1,4-dimethoxybenzene (DOB), 1-iodo-4-methoxybenzene (OIB), 1-iodo-4-methylthiobenzene (SIB), 1,4-dimethylthiobenzene (DSB) and 1,4-diiodobenzene (DIB) are systematically studied, where the widely used DIB is used as the reference. The effect of chalcogenation and iodination on the overall property is comprehensively investigated, which indicates that the versatile functional groups provided various types of noncovalent interactions with the host materials for modulating the morphology. Among them, SIB with the combination of sulphuration and iodination enabled more appropriate interactions with the host blend, giving rise to a highly ordered molecular packing and more favorable morphology. As a result, the binary OSCs based on PM6:L8-BO and PBTz-F:L8-BO as well as the ternary OSCs based on PBTz-F:PM6:L8-BO achieved impressive high PCEs of 18.87%, 18.81% and 19.68%, respectively, which are among the highest values for OSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA