Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Genomics ; 116(4): 110875, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38849018

RESUMO

Exploration of a stably expressed gene as a reference is critical for the accurate evaluation of miRNAs isolated from small extracellular vesicles (sEVs). In this study, we analyzed small RNA sequencing on plasma sEV miRNAs in the training dataset (n = 104) and found that miR-140-3p was the most stably expressed candidate reference for sEV miRNAs. We further demonstrated that miR-140-3p expressed most stably in the validation cohort (n = 46) when compared to two other reference miRNAs, miR-451a and miR-1228-3p, and the commonly-used miRNA reference U6. Finally, we compared the capability of miR-140-3p and U6 as the internal reference for sEV miRNA expression by evaluating key miRNAs expression in lung cancer patients and found that miR-140-3p was more suitable as a sEV miRNA reference gene. Taken together, our data indicated miR-140-3p as a stable internal reference miRNA of plasma sEVs to evaluate miRNA expression profiles in lung cancer patients.


Assuntos
Vesículas Extracelulares , Neoplasias Pulmonares , MicroRNAs , Humanos , MicroRNAs/sangue , MicroRNAs/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/sangue , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Feminino , Masculino , Padrões de Referência , Reação em Cadeia da Polimerase em Tempo Real/normas , Pessoa de Meia-Idade , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética
2.
Mol Cancer ; 23(1): 2, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178117

RESUMO

Peripheral T-cell lymphoma (PTCL) is a rare and heterogeneous group of hematological malignancies. Compared to our knowledge of B-cell tumors, our understanding of T-cell leukemia and lymphoma remains less advanced, and a significant number of patients are diagnosed with advanced stages of the disease. Unfortunately, the development of drug resistance in tumors leads to relapsed or refractory peripheral T-Cell Lymphomas (r/r PTCL), resulting in highly unsatisfactory treatment outcomes for these patients. This review provides an overview of potential mechanisms contributing to PTCL treatment resistance, encompassing aspects such as tumor heterogeneity, tumor microenvironment, and abnormal signaling pathways in PTCL development. The existing drugs aimed at overcoming PTCL resistance and their potential resistance mechanisms are also discussed. Furthermore, a summary of ongoing clinical trials related to PTCL is presented, with the aim of aiding clinicians in making informed treatment decisions.


Assuntos
Neoplasias Hematológicas , Linfoma de Células T Periférico , Humanos , Linfoma de Células T Periférico/tratamento farmacológico , Linfoma de Células T Periférico/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resultado do Tratamento , Neoplasias Hematológicas/tratamento farmacológico , Microambiente Tumoral
3.
J Cardiovasc Pharmacol ; 82(6): 458-469, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721971

RESUMO

ABSTRACT: Damage to the abdominal aortic wall and the local inflammatory response are key factors resulting in abdominal aortic aneurysm (AAA) formation. During this process, macrophage polarization plays a key role. However, in AAA, the regulatory mechanism of macrophages is still unclear, and further research is needed. In this study, we found that the transcription factor TCF3 was expressed at low levels in AAA. We overexpressed TCF3 and found that TCF3 could inhibit MMP and inflammatory factor expression and promote M2 macrophage polarization, thereby inhibiting the progression of AAA. Knocking down TCF3 could promote M1 polarization and MMP and inflammatory factor expression. In addition, we found that TCF3 increased miR-143-5p expression through transcriptional activation of miR-143-5p , which further inhibited expression of the downstream chemokine CCL20 and promoted M2 macrophage polarization. Our research indicates that TCF3-mediated macrophage polarization plays a key regulatory role in AAA, complementing the role and mechanism of macrophages in the occurrence and development of AAA and providing a scientific basis for AAA treatment.


Assuntos
Aneurisma da Aorta Abdominal , MicroRNAs , Humanos , Fatores de Transcrição/metabolismo , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Macrófagos/metabolismo , Inflamação/genética , Inflamação/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(26): 14721-14729, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32554500

RESUMO

Supported metal catalysts are extensively used in industrial and environmental applications. To improve their performance, it is crucial to identify the most active sites. This identification is, however, made challenging by the presence of a large number of potential surface structures that complicate such an assignment. Often, the active site is formed by an ensemble of atoms, thus introducing further complications in its identification. Being able to produce uniform structures and identify the ones that are responsible for the catalyst performance is a crucial goal. In this work, we utilize a combination of uniform Pd/Pt nanocrystal catalysts and theory to reveal the catalytic active-site ensemble in highly active propene combustion materials. Using colloidal chemistry to exquisitely control nanoparticle size, we find that intrinsic rates for propene combustion in the presence of water increase monotonically with particle size on Pt-rich catalysts, suggesting that the reaction is structure dependent. We also reveal that water has a near-zero or mildly positive reaction rate order over Pd/Pt catalysts. Theory insights allow us to determine that the interaction of water with extended terraces present in large particles leads to the formation of step sites on metallic surfaces. These specific step-edge sites are responsible for the efficient combustion of propene at low temperature. This work reveals an elusive geometric ensemble, thus clearly identifying the active site in alkene combustion catalysts. These insights demonstrate how the combination of uniform catalysts and theory can provide a much deeper understanding of active-site geometry for many applications.

5.
J Am Chem Soc ; 144(4): 1612-1621, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35050603

RESUMO

Low-temperature removal of noxious environmental emissions plays a critical role in minimizing the harmful effects of hydrocarbon fuels. Emission-control catalysts typically consist of large quantities of rare, noble metals (e.g., platinum and palladium), which are expensive and environmentally damaging metals to extract. Alloying with cheaper base metals offers the potential to boost catalytic activity while optimizing the use of noble metals. In this work, we show that PtxCu100-x catalysts prepared from colloidal nanocrystals are more active than the corresponding Pt catalysts for complete propene oxidation. By carefully controlling their composition while maintaining nanocrystal size, alloys with dilute Cu concentrations (15-30% atomic fraction) demonstrate promoted activity compared to pure Pt. Complete propene oxidation was observed at temperatures as low as 150 °C in the presence of steam, and five to ten times higher turnover frequencies were found compared to monometallic Pt catalysts. Through DFT studies and structural and catalytic characterization, the remarkable activity of dilute PtxCu100-x alloys was related to the tuning of the electronic structure of Pt to reach optimal binding energies of C* and O* intermediates. This work provides a general approach toward investigation of structure-property relationships of alloyed catalysts with efficient and optimized use of noble metals.

6.
Angew Chem Int Ed Engl ; 61(41): e202210434, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35947114

RESUMO

We report a method to prepare core-shell zeolite beta (*BEA) with an aluminous core and an epitaxial Si-rich shell. This method capitalizes on the inherent defects in *BEA crystals to simultaneously passivate acid sites on external surfaces and increase intracrystalline mesoporosity through facile post-hydrothermal synthesis modification in alkaline media. This process creates more hydrophobic materials by reducing silanol defects and enriching the shell in silica via a combination of dealumination and the relocation of silica from the core to the shell during intracrystalline mesopore formation. The catalytic consequences of *BEA core-shells relative to conventional analogues were tested using the biomass conversion of levulinic acid and n-butanol to n-butyl levulinate as a benchmark reaction. Our findings reveal that siliceous shells and intracrystalline mesopores synergistically enhance the performance of *BEA catalysts.

7.
Environ Sci Technol ; 55(18): 12607-12618, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34495644

RESUMO

Engineering surface defects on metal oxide supports could help promote the dispersion of active sites and catalytic performance of supported catalysts. Herein, a strategy of ZrO2 doping was proposed to create rich surface defects on CeO2 (CZO) and, with these defects, to improve Pt dispersion and enhance its affinity as single sites to the CZO support (Pt/CZO). The strongly anchored Pt single sites on CZO support were initially not efficient for catalytic oxidation of CO/C3H6. However, after a simple activation by H2 reduction, the catalytic oxidation performance over Pt/CZO catalyst was significantly boosted and better than Pt/CeO2. Pt/CZO catalyst also exhibited much higher thermal stability. The structural evolution of Pt active sites by H2 treatment was systematically investigated on aged Pt/CZO and Pt/CeO2 catalysts. With H2 reduction, ionic Pt single sites were transformed into active Pt clusters. Much smaller Pt clusters were created on CZO (ca. 1.2 nm) than on CeO2 (ca. 1.8 nm) due to stronger Pt-CeO2 interaction on aged Pt/CZO. Consequently, more exposed active Pt sites were obtained on the smaller clusters surrounded by more oxygen defects and Ce3+ species, which directly translated to the higher catalytic oxidation performance of activated Pt/CZO catalyst in vehicle emission control applications.


Assuntos
Óxidos , Emissões de Veículos , Catálise , Oxirredução , Oxigênio
8.
Mol Cancer ; 19(1): 74, 2020 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-32278350

RESUMO

seRNA is a noncoding RNA (ncRNA) transcribed from active super-enhancer (SE), through which SE exerts biological functions and participates in various physiological and pathological processes. seRNA recruits cofactor, RNA polymerase II and mediator to constitute and stabilize chromatin loop SE and promoter region, which regulates target genes transcription. In tumorigenesis, DNA insertion, deletion, translocation, focal amplification and carcinogen factor mediate oncogenic SE generation, meanwhile, oncogenic SE transcribes into tumor-related seRNA, termed as oncogenic seRNA. Oncogenic seRNA participates in tumorigenesis through activating various signal-pathways. The recent reports showed that oncogenic seRNA implicates in a widespread range of cytopathological processes in cancer progression including cell proliferation, apoptosis, autophagy, epithelial-mesenchymal transition, extracellular matrix stiffness and angiogenesis. In this article, we comprehensively summarized seRNA's characteristics and functions, and emphatically introduced inducible formation of oncogenic seRNA and its functional mechanisms. Lastly, some research strategies on oncogenic seRNA were introduced, and the perspectives on cancer therapy that targets oncogenic seRNA were also discussed.


Assuntos
Carcinogênese/patologia , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Neoplasias/patologia , Oncogenes , RNA Longo não Codificante/genética , Animais , Carcinogênese/genética , Humanos , Neoplasias/genética , Transcrição Gênica
9.
Int J Colorectal Dis ; 35(7): 1203-1210, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32303831

RESUMO

BACKGROUND: Tumor-associated macrophages (TAMs) are key components of colorectal cancer (CRC) microenvironment, but their role in CRC prognosis is not fully defined. OBJECTIVE: This study aimed to evaluate prognostic value of different types and distribution of TAMs in CRC. METHODS: Total 27 studies with 6115 patients were searched from PubMed and Embase and analyzed to determine the association between TAMs, including distinct TAM subsets and infiltration location, and CRC survival. The prognostic impact of TAMs on CRC was further stratified by tumor type and mismatch repair system (MMR) status. RESULTS: A pooled analysis indicated that high density of TAMs in CRC tissue was significantly associated with favorable 5-year overall survival (OS) but not with disease-free survival (DFS). CD 68+ TAM subset correlated with better 5-year OS, while neither CD68+NOS2+ M1 subset nor CD163+ M2 subset was correlated with 5-year OS. Increased CD68+ TAM infiltration in tumor stroma but not in tumor islet predicted improved 5-year OS. Stratification by tumor type and MMR status showed that in colon cancer or MMR-proficient CRC, elevated TAM density was associated with better 5-year OS. CONCLUSIONS: High infiltration of CD68+ TAMs could be a favorable prognostic marker in CRC. Future therapies stimulating CD68+ TAM infiltration may be promising in CRC treatment.


Assuntos
Neoplasias do Colo , Macrófagos Associados a Tumor , Antígenos de Diferenciação Mielomonocítica , Humanos , Macrófagos , Prognóstico , Microambiente Tumoral
10.
Biotechnol Appl Biochem ; 67(3): 383-388, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31876964

RESUMO

Abdominal aortic aneurysm (AAA) is a serious, life-threatening vascular disease that presents as an enlarged area of the aorta, which is the main artery that carries blood away from the heart. AAA may occur at any location in the aorta, but it is mainly found in the abdominal region. A ruptured AAA causes serious health issues, including death. Traditional imaging techniques, such as computed tomography angiogram, magnetic resonance imaging, and ultrasound sonography, have been used to identify AAAs. Circulating biomarkers have recently become attractive for diagnosing AAAs due to their cost-effectiveness compared to imaging. Insulin-like growth factor 1 (IGF-1), a secreted hormone vital for human atherosclerotic plaque stability, has been found to be an efficient biomarker for AAA identification. In this report, immunosensing was performed by using an InterDigitated electrode (IDE) sensor to detect circulating levels of IGF-1. The detection limit of IGF-1 was found to be 100 fM with this sensor. Moreover, related protein controls (IGF-2 and IGFBP3) were not detected with the same antibody, indicating selective IGF-1 detection. Thus, immunosensing by using an IDE sensor may help to effectively diagnose AAAs and represents a basic platform for further development.


Assuntos
Aneurisma da Aorta Abdominal/diagnóstico , Técnicas Biossensoriais , Técnicas Eletroquímicas , Fator de Crescimento Insulin-Like I/análise , Anticorpos Imobilizados/química , Biomarcadores/análise , Eletrodos , Humanos , Propriedades de Superfície
11.
BMC Psychiatry ; 20(1): 544, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33213416

RESUMO

BACKGROUND: Epidemiological studies have shown increased risk of suicide in cancer patients compared with the general population. The present study aimed to examine the association between physical symptoms and suicidal ideation in Chinese hospitalized cancer patients and test the modifying effect of health self-efficacy on the association. METHODS: A cross-sectional study was conducted with 544 hospitalized cancer patients in two general hospitals in northeast China via face-to-face interviews. Suicidal ideation was measured by using the first four items on the Yale Evaluation of Suicidality scale and then dichotomized into a positive and negative score. Multivariate logistic regression analyses were conducted to examine the impacts of physical symptoms, health self-efficacy, and their interactions on suicidal ideation. RESULTS: The suicidal ideation rate was 26.3% in the enrolled cancer patients. Logistic regression showed that insomnia (aOR = 1.84, 95% CI 1.13 to 3.00, p = 0.015) and lack of appetite (aOR = 2.14, 95% CI 1.26 to 3.64, p = 0.005) were significantly associated with suicidal ideation. Low health self-efficacy had a marginally significant exaggerating effect on the association between pain and suicidal ideation (aOR = 2.77, 95% CI 0.99 to 7.74, p = 0.053), after adjusting for significant socio-demographics, clinical characteristics, and depression. CONCLUSIONS: These findings demonstrate significant associations between physical symptoms (insomnia and/or lack of appetite) and suicidal ideation and highlight the potential modifying role of health self-efficacy in the identification and prevention of suicide among cancer patients.


Assuntos
Neoplasias , Ideação Suicida , China/epidemiologia , Estudos Transversais , Humanos , Fatores de Risco , Autoeficácia
12.
Am J Respir Cell Mol Biol ; 61(6): 765-775, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31596601

RESUMO

S-nitrosothiols (SNOs) are endogenous signaling molecules that have numerous beneficial effects on the airway via cyclic guanosine monophosphate-dependent and -independent processes. Healthy human airways contain SNOs, but SNO levels are lower in the airways of patients with cystic fibrosis (CF). In this study, we examined the interaction between SNOs and the molecular cochaperone C-terminus Hsc70 interacting protein (CHIP), which is an E3 ubiquitin ligase that targets improperly folded CF transmembrane conductance regulator (CFTR) for subsequent degradation. Both CFBE41o- cells expressing either wild-type or F508del-CFTR and primary human bronchial epithelial cells express CHIP. Confocal microscopy and IP studies showed the cellular colocalization of CFTR and CHIP, and showed that S-nitrosoglutathione inhibits the CHIP-CFTR interaction. SNOs significantly reduced both the expression and activity of CHIP, leading to higher levels of both the mature and immature forms of F508del-CFTR. In fact, SNO inhibition of the function and expression of CHIP not only improved the maturation of CFTR but also increased CFTR's stability at the cell membrane. S-nitrosoglutathione-treated cells also had more S-nitrosylated CHIP and less ubiquitinated CFTR than cells that were not treated, suggesting that the S-nitrosylation of CHIP prevents the ubiquitination of CFTR by inhibiting CHIP's E3 ubiquitin ligase function. Furthermore, the exogenous SNOs S-nitrosoglutathione diethyl ester and S-nitro-N-acetylcysteine increased the expression of CFTR at the cell surface. After CHIP knockdown with siRNA duplexes specific for CHIP, F508del-CFTR expression increased at the cell surface. We conclude that SNOs effectively reduce CHIP-mediated degradation of CFTR, resulting in increased F508del-CFTR expression on airway epithelial cell surfaces. Together, these findings indicate that S-nitrosylation of CHIP is a novel mechanism of CFTR correction, and we anticipate that these insights will allow different SNOs to be optimized as agents for CF therapy.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Processamento de Proteína Pós-Traducional , S-Nitrosotióis/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Aprotinina/farmacologia , Células Cultivadas , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Leupeptinas/farmacologia , Dobramento de Proteína , Estabilidade Proteica , Proteólise , Interferência de RNA , RNA Interferente Pequeno/farmacologia , S-Nitrosoglutationa/farmacologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
13.
J Cell Physiol ; 234(7): 10458-10469, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30417526

RESUMO

The aim of this study is to investigate the regulatory mechanism of circPDSS1/miR-186-5p/NEK2 axis on the viability and proliferation in gastric cancer (GC) cell line. Differentially expressed circRNAs, miRNAs, and mRNAs in GC tissues and paracarcinoma tissues were analyzed using gene chips GSE83521, GSE89143, and GSE93415. Then, the expression of circPDSS1, miR-186-5p, and NEK2 was analyzed via quantitative real-time polymerase chain reaction (qRT-PCR). Survival analysis was adopted to explore the association between the circPDSS1 expression and the prognosis of GC. The effect of circPDSS1 on GC cell cycle and apoptosis was verified with the flow cytometry. Targeting relationships among circPDSS1, miR-186-5p, and NEK2 were predicted via bioinformatics analysis and demonstrated by the dual-luciferase reporter assay. Our results showed that circPDSS1 and NEK2 were high-expressed whereas miR-186-5p was low-expressed in GC tissues and cells. CircPDSS1 promoted GC cell cycle and inhibited apoptosis by sponging miR-186-5p, while miR-186-5p inhibited cell cycle and promoted apoptosis by targeting NEK2. Thus, circPDSS1 acts as a tumor promoter by regulating miR-186-5p and NEK2, which could be a potential biomarker and therapeutic target for the management of GC.


Assuntos
MicroRNAs/genética , Quinases Relacionadas a NIMA/genética , RNA Circular/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Apoptose/genética , Biomarcadores Tumorais/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Prognóstico , Transdução de Sinais/genética
14.
Nanotechnology ; 30(33): 335403, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31026848

RESUMO

The electrocatalytical process is the most efficient way to produce ammonia (NH3) under ambient conditions, but developing a highly efficient and low-cost metal-free electrocatalysts remains a major scientific challenge. Hence, single atom and double boron (B) atoms doped 2D graphene-like carbon nitride (C2N-h2D) electrocatalysts have been designed (B@C2N and B2@C2N), and the efficiency of N2 reduction reaction (NRR) is examined by density functional theory calculation. The results show that the single and double B atoms can both be strongly embedded in natural nanoporous C2N with superior catalytic activity for N2 activation. The reaction mechanisms of NRR on the B@C2N and B2@C2N are both following an enzymatic pathway, and B2@C2N is a more efficient electrocatalyst with extremely low overpotential of 0.19 eV comparing to B@C2N (0.29 eV). In the low energy region, the hydrogenation of N2 is thermodynamically more favorable than the hydrogen production, thereby improving the selectivity for NRR. Based on these results, a new double-atom strategy may help guiding the experimental synthesis of highly efficient NRR electrocatalysts.

15.
Phytother Res ; 33(5): 1570-1578, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30907037

RESUMO

Brucine and Strychnine are alkaloids isolated from the seeds of Strychnos nux vomica L., which have long been used as a traditional medicine for the treatment of tumor. However, the effect of Brucine and Strychnine on colorectal cancer (CRC) and the underlying molecular mechanism remain unclear. In the present study, Brucine and Strychnine displayed profound inhibitory effects on the growth of human colon cancer cells. The results of flow cytometric analysis demonstrated that the two alkaloids induced cellular apoptosis. Moreover, the growth of DLD1 xenografted tumors in nude mice was significantly suppressed in the Brucine or Strychnine treated group. Mechanistically, the Wnt/ß-catenin is involved in this phenomenon, which is characterized by significantly increased expression of DKK1 and APC, whereas decreased expression of ß-catenin, c-Myc, and p-LRP6 in CRC cells as well as tumor tissues. Collectively, Brucine and Strychnine have targeted inhibition for colon cancer proliferation both in vitro and in vivo, and it is valuable for future exploitation and utilization as an antitumor agent of CRC.


Assuntos
Alcaloides/química , Neoplasias do Colo/tratamento farmacológico , Estricnina/análogos & derivados , Estricnina/química , Strychnos nux-vomica/química , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Neoplasias do Colo/patologia , Humanos , Camundongos , Camundongos Nus
16.
Cancer Sci ; 109(12): 3714-3725, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30238562

RESUMO

Long non-coding RNA MIF-AS1 (lncMIF-AS1) has been found to be upregulated in the tumor tissues of gastric cancer; however, its importance for the progression of gastric cancer remains unknown. Thus, the present study was designed to determine the role of the lncMIF-AS1-based signal transduction pathway in mediating the proliferation and apoptosis of gastric cancer cells. Differentially expressed lncRNAs and mRNAs were screened out using microarray analysis, based on the published data (GSE63288), and validated using quantitative RT-PCR. Target relationships between lncRNA-micro RNA (miRNA) and miRNA-mRNA were predicted by bioinformatics analysis and verified by dual-luciferase reporter assay. Protein expression of NDUFA4, COX6C and COX5B was detected by western blot. Cell proliferation, cell cycle and apoptosis were determined using colony formation assay and flow cytometry analysis. Oxidative phosphorylation in gastric cancer cells was assessed by levels of oxygen consumption and ATP synthase activity. Expression of lncMIF-AS1 and NDUFA4 were upregulated in gastric cancer tissues and cells as compared with non-cancerous gastric tissues and cells (P < .05). MiR-212-5p was identified as the most important miRNA linker between lncMIF-AS1 and NDUFA4, which was negatively regulated by lncMIF-AS1 and its depletion is the main cause of NDUFA4 overexpression (P < .01). The upregulated expression of NDUFA4 then greatly promoted the proliferation and decreased the apoptosis of gastric cancer cells through activation of the oxidative phosphorylation pathway. Taken together, the present study implies that inhibition of lncMIF-AS1/miR-212-5p/NDUFA4 signal transduction may provide a promising therapeutic target for the treatment of gastric cancer.


Assuntos
Regulação para Baixo , Complexo IV da Cadeia de Transporte de Elétrons/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética , Regiões 3' não Traduzidas , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação Oxidativa
17.
Mol Carcinog ; 57(12): 1763-1779, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30144176

RESUMO

Nasopharyngeal carcinoma (NPC) has a high metastatic clinicopathological feature. As a carcinogen factor, N,N'-dinitrosopiperazine (DNP) is involved in NPC metastasis, but its precise mechanism has not been fully elucidated. Herein, we showed that DNP promotes NPC metastasis through upregulating miR-149. DNP was found to decrease Plakophilin3 (PKP3) expression, further DNP-decreased PKP3 was verified to be through upregulating miR-149. We also found that DNP induced proliferation, adhesion, migration and invasion of NPC cell, which was inhibited by miR-149-inhibitor. DNP may promote NPC metastasis through miR-149-decreased PKP3 expression. Therefore, DNP-increased miR-149 expression may be an important factor of NPC high metastasis, and miR-149 may serve as a molecular target for anti-metastasis therapy of NPC.


Assuntos
MicroRNAs/genética , Carcinoma Nasofaríngeo/genética , Metástase Neoplásica/genética , Nitrosaminas/toxicidade , Placofilinas/genética , Regiões 3' não Traduzidas , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Neoplasias Nasofaríngeas/genética , Nitrosaminas/química , Piperazina/química , Placofilinas/metabolismo , Regulação para Cima , Adulto Jovem
18.
Water Sci Technol ; 77(5-6): 1441-1448, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29528331

RESUMO

Novel visible-light-induced UiO-66/BiOI photocatalysts with a p-n junction structure have been prepared for the first time through a facile hydrothermal method. The prepared photocatalysts were characterized using the powder X-ray diffraction, high resolution transmission electron microscopy, scanning electron microscopy, UV-visible diffuse reflectance spectra, and N2 adsorption-desorption (Brunauer-Emmett-Teller) techniques respectively. The photodegradation performances of UiO-66/BiOI photocatalysts were evaluated by photodegrading salicylic acid under visible-light irradiation. The UiO-66/BiOI composites displayed much higher photocatalytic efficiencies than pure BiOI under visible light. When the content of UiO-66 was 5.2 wt%, the composite (UiO-66/BiOI-2) has the best photocatalytic activity. Most of the salicylic acid molecules can be degraded in 100 min. The degradation rate of UiO-66/BiOI-2 samples is higher than single BiOI and UiO-66. The enhanced photocatalytic performance of UiO-66/BiOI may be ascribed to the formation of p-n heterojunctions between BiOI and UiO-66, which facilitates the transfer and separation of the photogenerated charge carriers. After recycling of the photocatalyst for five times for the photodegradation of salicylic acid, more than 85% of salicylic acid could still be degraded in the fifth cycle, implying that the as-prepared photocatalysts are highly stable.


Assuntos
Bismuto/química , Luz , Zircônio/química , Adsorção , Catálise , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Processos Fotoquímicos , Fotólise , Difração de Raios X
19.
Hepatology ; 64(5): 1606-1622, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27533020

RESUMO

Increasing evidence supports a role for N-myc downstream-regulated gene 2 (NDRG2) deregulation in tumorigenesis. We investigated the roles and mechanisms of NDRG2 in human cholangiocarcinoma (CCA) progression. In the present study, expression of NDRG2, microRNA (miR)-181c and leukemia inhibitory factor (LIF) in human CCA and adjacent nontumor tissues were examined. The effects of NDRG2 on CCA tumor growth and metastasis were determined both in vivo and in vitro. The role of the NDRG2/LIF/miR-181c signaling pathway in cholangiocarcinogenesis and metastasis were investigated both in vivo and in vitro. The results showed that human CCA tissues exhibited decreased levels of NDRG2 and increased levels of miR-181c and LIF compared with nontumor tissues. NDRG2 could inhibit CCA cell proliferation, chemoresistance, and metastasis both in vitro and in vivo. We found that NDRG2 is a target gene of miR-181c, and the down-regulation of NDRG2 was attributed to miR-181c overexpression in CCA. Furthermore, miR-181c can be activated by LIF treatment, whereas NDRG2 could inhibit LIF transcription through disrupting the binding between Smad, small mothers against decapentaplegic complex and LIF promoter. Down-regulation of NDRG2 and overexpression of miR-181c or LIF are significantly associated with a poorer overall survival (OS) in CCA patients. Finally, we found that a combination of NDRG2, miR-181c, and LIF expression is a strong predictor of prognosis in CCA patients. CONCLUSION: These results establish the counteraction between NDRG2 and LIF/miR-181c as a key mechanism that regulates cholangiocarcinogenesis and metastasis. Our results elucidated a novel pathway in NDRG2-mediated inhibition of cholangiocarcinogenesis and metastasis and suggest new therapeutic targets, including NDRG2, LIF, miR-181c, and transforming growth factor beta, in CCA prevention and treatment. (Hepatology 2016;64:1606-1622).


Assuntos
Neoplasias dos Ductos Biliares/etiologia , Colangiocarcinoma/etiologia , Retroalimentação Fisiológica , Fator Inibidor de Leucemia/fisiologia , MicroRNAs/fisiologia , Proteínas/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA