RESUMO
Intercropping with hyperaccumulators can facilitate the safe utilization of cadmium-contaminated soil. However, the effectiveness of this approach is influenced by plant species and varieties, which necessitates research on optimal plant consortia. In this study, 8 tomato varieties (3 cherry tomatoes and 5 common large-fruit tomatoes) were intercropped with Sedum alfredii in a moderately Cd-contaminated vegetable field. The results showed that the Cd concentration in the fruits of common large-fruit tomato varieties under monoculture was 1.03-1.50â¯mg/kg, while that in the fruits of cherry tomato varieties was 0.67-0.71â¯mg/kg. After intercropping with S. alfredii, the fruit Cd concentrations of Hangza 501, Hangza 503, and Hangza 108 decreased by 16.42â¯%, 19.72â¯%, and 6.76â¯%, respectively, while those of the other varieties significantly increased, except for those of Hangza 8. In contrast, the shoot Cd concentration of cherry tomatoes was greater than that of large-fruit tomatoes under monoculture. Furthermore, a significant increase in the shoot Cd concentration was noted in the Hangza 501, Hangza 503 and Hangza 603 plants following intercropping. Additionally, intercropping with S. alfredii increased the concentration of soluble sugars in the fruits of Hangza 8, Hangza 501, Hangza 503 and Hangza 603 by 4.66â¯%, 17.91â¯%, 10.60â¯% and 17.88â¯%, respectively. Intercropping with tomatoes resulted in a decrease in both the biomass and Cd uptake of S. alfredii. Interestingly, the inhibitory effect on S. alfredii was less pronounced when intercropped with cherry tomatoes than when intercropped with large-fruit tomatoes. Among the intercropping treatments, S. alfredii exhibited the greatest total Cd accumulation (0.06â¯mg/plant) when intercropped with Hangza 503. In conclusion, the cherry tomato variety Hangza 503 was the most suitable for intercropping with S. alfredii and can be used safely for vegetable production and simultaneous phytoremediation of polluted soil. Our findings suggest that strategic selection of tomato varieties can optimize the effectiveness of "phytoextraction coupled with agro-safe production" technology for managing soil Cd concentrations.
Assuntos
Biodegradação Ambiental , Cádmio , Frutas , Poluentes do Solo , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Cádmio/metabolismo , Cádmio/análise , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Frutas/metabolismo , Sedum/metabolismo , Solo/química , Brotos de Planta/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Agricultura/métodosRESUMO
Application of microbial agents is a novel strategy to improve the quality and health of plant, which can be used to increase zinc (Zn) uptake and alleviate Zn toxicity. Here, endophytic bacteria with Zn solubilizing and growth-promoting properties were isolated from hyperaccumulating ecotype (HE) of Sedum alfredii Hance and their effects on Zn absorption and accumulation of non-hyperaccumulating ecotype (NHE) were studied. The results showed that most endophytic bacteria of HE have good Zn solubilizing or growth-promoting properties. Under the condition of 20 µM ZnSO4, the biomass of NHE inoculated with SaPS1, SaEN2, SaPR2, SaBA2, SaBA3 was 2.8-3.2 times higher than that of non-inoculation control, and the Zn concentration of shoots was increased by 45.9, 89.0, 53.7, 77.5, and 42.6% after inoculation with SaPA1, SaP1, SaEN2, SaBA1, and SaBA2. Under the condition of 100 µM ZnSO4, inoculation with SaVA1, SaPS3, SaB1, SaPR1, and SaEN3 alleviated Zn stress and significantly reduced Zn concentration of shoots. Therefore, endophytic bacteria can be an effective means of improving plant Zn nutrition quality in the normal condition and benefit plant health in the stress environment.
In this study, endophytes with Zn solubilizing properties were systematically isolated from Zn hyperaccumulator Sedum alfredii Hance. The aim is to identify endophyte resources with good promoting effect on plant growth and Zn uptake, and to provide scientific basis for the development of efficient biofortified agent.
RESUMO
Intercropping crops with hyperaccumulators is a proven model for coupling crop safety production and soil heavy metal remediation. And both crop genotypes and soil properties might have great impacts on the effect of intercropping. Therefore, a greenhouse pot experiment was designed to investigate the effects of intercropping different tomato varieties with the cadmium (Cd) hyperaccumulator Sedum alfredii Hance (S. alfredii Hance) on different soils. The results showed that intercropping promoted Cd uptake by S. alfredii Hance and reduced soil total Cd concentration. There was no significant effect of intercropping on tomato yield and Cd concentration. Different tomato varieties had different effects on tomato yield and Cd concentration. The yield of cherry tomato was 1.04 times higher than that of common large fruit tomato, while the Cd concentration in all parts was lower than that of common large fruit tomato. Different typical zonal soils had different effects on tomato production and soil remediation. And among the four studied soils, tomatoes grown on ZJ soil had the highest yields and lowest fruit Cd concentration, making them more suitable for remediation coupled with safety production. This study provided a comprehensive analysis of tomato production benefits and soil remediation effects, which could be useful as a guide in vegetable safety production coupled with soil remediation practices in the Cd-contaminated greenhouse.
Assuntos
Sedum , Poluentes do Solo , Solanum lycopersicum , Cádmio/análise , Solo , Poluentes do Solo/análise , Biodegradação Ambiental , Produção AgrícolaRESUMO
Chromium (Cr) is a major pollutant affecting the environment and human health and microbial remediation is considered to be the most promising technology for the restoration of the heavily metal-polluted soil. However, the difference between rhizosphere and endophytic bacteria on the potential of crop safety production in Cr-contaminated farmland is not clearly elucidated. Therefore, eight Cr-tolerant endophytic strains of three species: Serratia (SR-1~2), Lysinebacillus (LB-1~5) and Pseudomonas (PA-1) were isolated from rice and maize. Additionally, one Cr-tolerant strain of Alcaligenes faecalis (AF-1) was isolated from the rhizosphere of maize. A randomized group pot experiment with heavily Cr-contaminated (a total Cr concentration of 1020.18 mg kg-1) paddy clay soil was conducted and the effects of different bacteria on plant growth, absorption and accumulation of Cr in lettuce (Lactuca sativa var. Hort) were compared. The results show that: (i) the addition of SR-2, PA-1 and LB-5 could promote the accumulation of plant fresh weight by 10.3%, 13.5% and 14.2%, respectively; (ii) most of the bacteria could significantly increase the activities of rhizosphere soil catalase and sucrase, among which LB-1 promotes catalase activity by 224.60% and PA-1 increases sucrase activity by 247%; (iii) AF-1, SR-1, LB-1, SR-2, LB-2, LB-3, LB-4 and LB-5 strains could significantly decrease shoot the Cr concentration by 19.2-83.6%. The results reveal that Cr-tolerant bacteria have good potential to reduce shoot Cr concentration at the heavily contaminated soil and endophytic bacteria have the same or even better effects than rhizosphere bacteria; this suggests that bacteria in plants are more ecological friendly than bacteria in soil, thus aiming to safely produce crops in Cr-polluted farmland and alleviate Cr contamination from the food chain.
RESUMO
Intercropping with hyperaccumulators is believed to be an important and efficient way to achieve simultaneous safe agricultural production and phytoremediation of polluted soils. However, some studies have suggested that this technique might facilitate the uptake of heavy metals by crops. To investigate the effects of intercropping on the heavy metal contents of plants and soil, data from 135 global studies were collected and analyzed by meta-analysis. The results showed that intercropping could significantly reduce the contents of heavy metals in the main plants and soils. Plant species was the main factor that affected plant and soil metal contents in the intercropping system, and the heavy metal content could be significantly reduced when members of the Poaceae and Crassulaceae were used as main plants or when legumes were used as intercropped plants. Among all the intercropped plants, the best one for removing heavy metals from the soil was a Crassulaceae hyperaccumulator. These results not only highlight the main factors affecting intercropping systems but also provide reliable reference information for the practice of safe agricultural production coupled with phytoremediation of heavy metal-contaminated farmland.