RESUMO
Flatness is a critical parameter in the manufacturing industry, directly impacting the fit and overall product performance. As the efficiency of manufacturing continues to advance, there is an increasing demand for more accurate and efficient measurement techniques. Existing methods often struggle to strike a balance between precision and efficiency. In response, this article introduces a novel approach that is capable of achieving high-precision and rapid measurements concerning multiple surfaces. By enhancing the traditional phase measuring deflectometry (PMD) method, employing a matching technique based on polar lines and normal vector constraints to address discrete surface measurement challenges, and implementing a plane pre-positioning method to tackle low efficiency in binocular matching and solving, we successfully performed swift and synchronized measurements for a large batch of specular surfaces and obtained the three-dimensional surface profile of each measured surface. Through experimental validation, the method proposed in this paper can perform the batch measurement of specular planes while maintaining high measurement accuracy.
RESUMO
Visual measurement methods are extensively used in various fields, such as aerospace, biomedicine, agricultural production, and social life, owing to their advantages of high speed, high accuracy, and non-contact. However, traditional camera-based measurement systems, relying on the pinhole imaging model, face challenges in achieving three-dimensional measurements using a single camera by one shot. Moreover, traditional visual systems struggle to meet the requirements of high precision, efficiency, and compact size simultaneously. With the development of light field theory, the light field camera has garnered significant attention as a novel measurement method. Due to its special structure, the light field camera enables high-precision three-dimensional measurements with a single camera through only one shot. This paper presents a comprehensive overview of light field camera measurement technologies, including the imaging principles, calibration methods, reconstruction algorithms, and measurement applications. Additionally, we explored future research directions and the potential application prospects of the light field camera.
RESUMO
This study aims to examine the factors influencing pre-service teachers' altruistic motivation for selecting their profession within a Chinese educational setting. Drawing on existing research, a three-element (social-cognitive, emotional, and realistic) model is integrated to explore how pre-service teachers' altruistic motivations are formed and evolved. Utilizing this model, interview data from 18 students enrolled in the Chinese Free Teacher Education program were collected and analyzed by thematic analysis. The findings indicate that social-cognitive factors impact altruistic motivation through engagement with social issues and reflections on practical educational challenges. The emotional factor is manifested through the participants' positive and negative emotions. The realistic factor comprises familial influences and personal career preferences, which play a role in the decision to pursue teaching as a lifelong vocation. This study proposes a structured and functional model that can serve as a foundation for future research into the development of altruistic motivation. It also offers insights into nurturing altruistic motivation among both pre-service and practicing teachers in their career decision-making process.
RESUMO
Transparent materials are widely used in industrial applications, such as construction, transportation, and optics. However, the complex optical properties of these materials make it difficult to achieve precise surface form measurements, especially for bulk surface form inspection in industrial environments. Traditional structured light-based measurement methods often struggle with suboptimal signal-to-noise ratios, making them ineffective. Currently, there is a lack of efficient techniques for real-time inspection of such components. This paper proposes a single-frame measurement technique based on deflectometry for large-size transparent surfaces. It utilizes the reflective characteristics of the measured surface, making it independent of the surface's diffuse reflection properties. This fundamentally solves the issues associated with signal-to-noise ratios. By discretizing the phase map, it separates the multiple surface reflection characteristics of transparent devices, enabling transparent device measurement. To meet the requirements of industrial dynamic measurement, this technique only needs a simple and low-cost system structure, which contains just two cameras for image capture. It does not require phase shifting to complete the measurement, making it independent of the screen and having the potential for larger surface measurement. The proposed method was used to measure a 400mm aperture automobile glass, and the results showed that it is able to achieve a measurement accuracy on the order of 10 µ m. The method proposed in this paper overcomes the influence of surface reflection on transparent objects and significantly improves the efficiency and accuracy of large-sized transparent surface measurements by using a single-frame image measurement. Moreover, this method shows promise for broader applications, including measurements of lenses and HUD (Heads-Up Display) components, showcasing significant potential for industrial applications.
RESUMO
Accumulating evidence emphasizes the critical reciprocity between gut microbiota and intestinal barrier function in maintaining the gastrointestinal homeostasis. Given the fundamental role caused by intestinal permeability, which has been scrutinized as a measurable potential indicator of perturbed barrier function in clinical researches, it seems not surprising that recent decades have been marked by augmented efforts to determine the interaction between intestinal microbes and permeability of the individual. However, despite the significant progress in characterizing intestinal permeability and the commensal bacteria in the intestine, the mechanisms involved are still far from being thoroughly revealed. In the present review, based on multiomic methods, high-throughput sequencing and molecular biology techniques, the impacts of gut microbiota on intestinal permeability as well as their complex interaction networks are systematically summarized. Furthermore, the diseases related to intestinal permeability and main causes of changes in intestinal permeability are briefly introduced. The purpose of this review is to provide a novel prospection to elucidate the correlation between intestinal microbiota and permeability, and to explore a promising solution for diagnosis and treatment of gastrointestinal related diseases.