Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Med ; 30(1): 111, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085816

RESUMO

BACKGROUND: Osteoclast hyperactivation due to the pathological overproduction of reactive oxygen species (ROS) stimulated by glucocorticoids (GCs) is one of the key drivers behind glucocorticoid-induced osteonecrosis of the femoral head (GIONFH). The insulin degrading enzyme (IDE), a conserved Zn2+ metallo-endopeptidase, facilitates the DNA binding of glucocorticoid receptor and plays a substantial role in steroid hormone-related signaling pathways. However, the potential role of IDE in the pathogenesis of GIONFH is yet undefined. METHODS: In this study, we employed network pharmacology and bioinformatics analysis to explore the impact of IDE inhibition on GIONFH with 6bK as an inhibitory agent. Further evidence was collected through in vitro osteoclastogenesis experiments and in vivo evaluations involving methylprednisolone (MPS)-induced GIONFH mouse model. RESULTS: Enrichment analysis indicated a potential role of 6bK in redox regulation amid GIONFH development. In vitro findings revealed that 6bK could attenuate GCs-stimulated overactivation of osteoclast differentiation by interfering with the transcription and expression of key osteoclastic genes (Traf6, Nfatc1, and Ctsk). The use of an H2DCFDA probe and subsequent WB assays introduced the inhibitory effects of 6bK on osteoclastogenesis, linked with the activation of the nuclear factor erythroid-derived 2-like 2 (Nrf2)-mediated antioxidant system. Furthermore, Micro-CT scans validated that 6bK could alleviate GIONFH in MPS-induced mouse models. CONCLUSIONS: Our findings suggest that 6bK suppresses osteoclast hyperactivity in GCs-rich environment. This is achieved by reducing the accumulation of intracellular ROS via promoting the Nrf2-mediated antioxidant system, thus implying that IDE could be a promising therapeutic target for GIONFH.


Assuntos
Modelos Animais de Doenças , Necrose da Cabeça do Fêmur , Glucocorticoides , Fator 2 Relacionado a NF-E2 , Osteoclastos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos , Osteoclastos/metabolismo , Osteoclastos/efeitos dos fármacos , Necrose da Cabeça do Fêmur/metabolismo , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/etiologia , Necrose da Cabeça do Fêmur/patologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Masculino , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Osteonecrose/metabolismo , Osteonecrose/induzido quimicamente
2.
J Sci Food Agric ; 104(7): 4342-4353, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38328855

RESUMO

BACKGROUND: Non-nutritive sweeteners (NNS) are commonly used in sweetened foods and beverages; however their role in metabolic regulation is still not clear. In this experiment, we used guinea pigs as an animal model to study the effect of NNS on body growth and intestinal health by modifying gut microbiota and hypothalamus-related proteins. RESULTS: For a 28-day feeding experiment a total of 40 guinea pigs were randomly divided into four groups, one control (CN) group and three treatments, in which three NNS were added to the diet: rebaudioside A (RA, 330 mg kg-1), sodium saccharin (SS, 800 mg kg-1), and sucralose (TGS, 167 mg kg-1), respectively. The TGS group exhibited significantly reduced food consumption in comparison with the CN group (P < 0.05) whereas the RA group showed increased food consumption in comparison with the CN group (P < 0.05). Notably, Taste receptor type 1 subunit 2 (T1R2) expression in the hypothalamus was significantly higher in the RA group than in the CN group (P < 0.05). The mRNA expressions of appetite-stimulated genes arouti-related neuropeptide (AGRP), neuropeptide Y (NPY), and thyroid stimulating hormone (TSHB) were significantly higher than those in the CN group (P < 0.05) but mRNA expressions of appetite-suppressed genes tryptophan hydroxylase 2(THP2) were significantly lower in the TGS group (P < 0.05). Furthermore, NNS in the guinea pig diets (RA, SS, TGS) significantly increased the relative abundance of Muribaculaceae but decreased the relative abundance of Clostridia_vadin BB60 in comparison with the CN group (P < 0.05). We also found that dietary supplementation with RA also significantly altered the relative abundance of Lactobacillus. CONCLUSION: Our finding confirmed that dietary supplementation with RA and TGS affected body growth and intestinal health by modulating hypothalamic RNA profiles and ileum microbiota, suggesting that NNS should be included in guinea-pig feeding. © 2024 Society of Chemical Industry.


Assuntos
Microbioma Gastrointestinal , Adoçantes não Calóricos , Cobaias , Animais , Peso Corporal , Íleo , RNA Mensageiro
3.
Angew Chem Int Ed Engl ; 63(32): e202405560, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38787342

RESUMO

Radical-involved multicomponent difunctionalization of 1,3-dienes has recently emerged as a promising strategy for rapid synthesis of valuable allylic compounds in one-pot operation. However, the expansion of radical scope and enantiocontrol remain two major challenges. Herein, we describe an unprecedented photoinduced copper-catalyzed highly enantioselective three-component radical 1,2-azidooxygenation of 1,3-dienes with readily available azidobenziodazolone reagent and carboxylic acids. This mild protocol exhibits a broad substrate scope, high functional group tolerance, and exceptional control over chemo-, regio- and enantioselectivity, providing practical access to diverse valuable azidated chiral allylic esters. Mechanistic studies imply that the chiral copper complex is implicated as a bifunctional catalyst in both the photoredox catalyzed azidyl radical generation and enantioselective radical C-O cross-coupling.

4.
Asian J Pharm Sci ; 19(2): 100900, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590797

RESUMO

Ionic liquids (ILs) have been proven to be an effective technology for enhancing drug transdermal absorption. However, due to the unique structural components of ILs, the design of efficient ILs and elucidation of action mechanisms remain to be explored. In this review, basic design principles of ideal ILs for transdermal drug delivery system (TDDS) are discussed considering melting point, skin permeability, and toxicity, which depend on the molar ratios, types, functional groups of ions and inter-ionic interactions. Secondly, the contributions of ILs to the development of TDDS through different roles are described: as novel skin penetration enhancers for enhancing transdermal absorption of drugs; as novel solvents for improving the solubility of drugs in carriers; as novel active pharmaceutical ingredients (API-ILs) for regulating skin permeability, solubility, release, and pharmacokinetic behaviors of drugs; and as novel polymers for the development of smart medical materials. Moreover, diverse action mechanisms, mainly including the interactions among ILs, drugs, polymers, and skin components, are summarized. Finally, future challenges related to ILs are discussed, including underlying quantitative structure-activity relationships, complex interaction forces between anions, drugs, polymers and skin microenvironment, long-term stability, and in vivo safety issues. In summary, this article will promote the development of TDDS based on ILs.

5.
Adv Mater ; 36(29): e2400365, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38752379

RESUMO

Deterministic integration of phase-pure Ruddlesden-Popper (RP) perovskites has great significance for realizing functional optoelectronic devices. However, precise fabrications of artificial perovskite heterostructures with pristine interfaces and rational design over electronic structure configurations remain a challenge. Here, the controllable synthesis of large-area ultrathin single-crystalline RP perovskite nanosheets and the deterministic fabrication of arbitrary 2D vertical perovskite heterostructures are reported. The 2D heterostructures exhibit intriguing dual-peak emission phenomenon and dual-band photoresponse characteristic. Importantly, the interlayer energy transfer behaviors from wide-bandgap component to narrow-bandgap component modulated by comprising quantum wells are thoroughly revealed. Functional nanoscale photodetectors are further constructed based on the 2D heterostructures. Moreover, by combining the modulated dual-band photoresponse characteristic with double-beam irradiation modes, and introducing an encryption algorithm mechanism, a light communication system with high security and reliability is achieved. This work can greatly promote the development of heterogeneous integration technologies of 2D perovskites, and could provide a competitive candidate for advanced integrated optoelectronics.

6.
J Colloid Interface Sci ; 663: 103-110, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38394815

RESUMO

As the drawbacks of antibiotics in treating bacterial infections emerged, physical methods such as near-infrared-activated (NIR-activated) bacterial killing, have attracted great interests for their advantages of no resistance, short action time and few side effects. In this manuscript, NIR-activated bacteria-killing performance of chiral copper sulphide nanoparticles (L-/d-CuS NPs) was investigated using linearly polarized light (LPL) and circularly polarized light (CPL) as illumination sources, respectively. Chiral CuS NPs showed enhanced NIR-activated bacteria-killing effect compared with achiral CuS NPs under the same conditions. Moreover, these chiral CuS NPs showed obvious chirality-related antibacterial effect: the bacterial killing was more efficient under CPL activation, and L- and d-CuS NPs had higher antibacterial efficiency under left circularly polarized light (LCPL) and right circularly polarized light (RCPL), respectively. The possible mechanism of bacteria-killing performance for chiral CuS NPs was discussed in detailed. Photothermal bacteria-killing tests of chiral CuS NPs "sealed" in polydimethylsiloxane (PDMS) demonstrated the individual influence of photothermal effect. These observations in this paper could provide ideas for the potential applications of chiral nanostructures with enhanced photothermal effect in efficient bacterial killing.


Assuntos
Nanopartículas , Nanoestruturas , Nanopartículas/química , Nanoestruturas/química , Antibacterianos/farmacologia , Cobre/farmacologia , Cobre/química , Bactérias
7.
Adv Mater ; 36(13): e2310248, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38118456

RESUMO

Metal halide perovskite films have gained significant attention because of their remarkable optoelectronic performances. However, their poor stability upon the severe environment appears to be one of the main facets that impedes their further commercial applications. Herein, a method to improve the stability of flexible photodetectors under water and humidity environment without encapsulation is reported. The devices are fabricated using the physical vapor deposition method (Pulse Laser Deposition & Thermal Evaporation) under high-vacuum conditions. An amorphous organic Rubrene film with low molecular polarity and high elastic modulus serves as both a protective layer and hole transport layer. After immersed in water for 6000 min, the photoluminescence intensity attenuation of films only decreased by a maximum of 10%. The demonstrator device, based on Rubrene/CsPbBr3/ZnO heterojunction confirms that the strategy not only enhances device moisture and mechanical stability but also achieves high sensitivity in optoelectronic detection. In self-powered mode, it has a fast response time of 79.4 µs /207.6 µs and a responsivity 124 mA W-1. Additionally, the absence of encapsulation simplifies the fabrication of complex electrodes, making it suitable for various applications. This study highlights the potential use of amorphous organic films in improving the stability of perovskite-based flexible devices.

8.
Aging Cell ; 23(4): e14092, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38287696

RESUMO

Osteoarthritis (OA), a chronic degenerative joint disease, is highly prevalent among the aging population, and often leads to joint pain, disability, and a diminished quality of life. Although considerable research has been conducted, the precise molecular mechanisms propelling OA pathogenesis continue to be elusive, thereby impeding the development of effective therapeutics. Notably, recent studies have revealed subchondral bone lesions precede cartilage degeneration in the early stage of OA. This development is marked by escalated osteoclast-mediated bone resorption, subsequent imbalances in bone metabolism, accelerated bone turnover, and a decrease in bone volume, thereby contributing significantly to the pathological changes. While the role of aging hallmarks in OA has been extensively elucidated from the perspective of chondrocytes, their connection with osteoclasts is not yet fully understood. There is compelling evidence to suggest that age-related abnormalities such as epigenetic alterations, proteostasis network disruption, cellular senescence, and mitochondrial dysfunction, can stimulate osteoclast activity. This review intends to systematically discuss how aging hallmarks contribute to OA pathogenesis, placing particular emphasis on the age-induced shifts in osteoclast activity. It also aims to stimulate future studies probing into the pathological mechanisms and therapeutic approaches targeting osteoclasts in OA during aging.


Assuntos
Reabsorção Óssea , Cartilagem Articular , Osteoartrite , Humanos , Idoso , Osteoclastos/metabolismo , Qualidade de Vida , Osteoartrite/metabolismo , Reabsorção Óssea/metabolismo , Envelhecimento , Cartilagem Articular/metabolismo
9.
Heliyon ; 10(15): e35374, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170388

RESUMO

Background: Increased osteoclast activity constitutes the primary etiology of excessive bone erosion in postmenopausal osteoporosis. ERp57, otherwise referred to as protein disulfide isomerase A3 (PDIA3), plays a crucial role in the regulation of intracellular calcium signaling. This is documented to exert a profound impact on osteoclast differentiation and functionality. Methods: To ascertain the potential role of ERp57 in disease progression, prevention, and treatment, network pharmacology and bioinformatics analyses were conducted in relation to postmenopausal osteoporosis and ERp57 inhibitor (Loc14). Then, subsequent experimental verifications were employed in vitro on osteoclast and osteoblast, and in vivo on ovariectomy (OVX) mice models. Results: Multiple enrichment analyses suggested that the "calcium signaling pathway" may constitute a potential avenue for therapeutic intervention by Loc14 in the treatment of postmenopausal osteoporosis. In vitro experiments demonstrated inhibition of ERp57 could block osteoclast differentiation and function by interfering with the expression of osteoclast marker genes (Traf6, Nfatc1, and Ctsk). Further mechanisms studies based on calcium imaging, qPCR, and WB established that ERp57 inhibitor (Loc14) could obstruct calcium oscillation in osteoclast precursor cells (OPCs) by limiting the entry sources of cytosolic Ca2+ and interfering with calmodulin/calcineurin/Nfatc1 pathway. Evidence from Micro-CT scanning and double calcein labeling confirmed that the application of Loc14 in vivo could alleviate bone loss and partially reversed the osteogenic impairment caused by OVX in mice. Conclusions: Our findings proved the suppressive effects of Loc14 on osteoclastogenesis via attenuating calcium oscillation and associated singling pathways, providing ERp57 as a potential therapeutic target for postmenopausal osteoporosis.

10.
Food Chem ; 446: 138683, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428081

RESUMO

A commercial high-resolution MS database "TCM-PCDL" was innovatively introduced to automatically identify multi-components in 73 edible flowers rapidly and accurately by liquid chromatography-high resolution mass spectrometry, which can be time-consuming and labor-intensive in traditional manual method. The database encompasses over 2565 natural products with various energy levels. Unknown compounds can be identified through direct matching and scoring MS2 spectra with database. A total of 870 compounds were identified from 73 flowers, with polyphenols constituting up to 75%. Focusing on polyphenols, a high performance liquid chromatography (HPLC) method was developed to generate fingerprints from 510 batches, establishing an "HPLC database" that enabled accurate authentication using similarity scores and rankings. This method demonstrated an accuracy rate of 100% when applied to 30 unknown samples. For flowers prone to confusion, additional statistical analysis methods could be employed as aids in authentication. This study provides valuable insights for large-scale sample chemical profiling and authentication.


Assuntos
Extratos Vegetais , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/química , Polifenóis , Flores
11.
CNS Neurosci Ther ; 30(2): e14618, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38334061

RESUMO

AIMS: We investigated the potential mechanisms underlying the therapeutic efficacy of electroacupuncture (EA) at the Shuigou (GV26) and Baihui (GV20) acupoints in the treatment of ischemic stroke. METHODS: We assessed the therapeutic effects of EA on MCAO mice through behavioral studies and TTC staining. Various techniques, such as RT-PCR, immunofluorescence, and Western blots, were employed to evaluate the activation and polarization of microglia/macrophages, and changes in the TRPV4 ion channel. We used the TRPV4 antagonist GSK2193874 (GSK219) to verify the involvement of TRPV4 in the therapeutic effects of EA. RESULTS: EA effectively improved neurological impairments and reduced cerebral infarction volume in MCAO mice. It suppressed activated microglia/macrophages and inhibited their polarization toward the M1 phenotype post-MCAO. EA also downregulated the expression of pro-inflammatory cytokines, including Tnf-α, Il-6, Il-1ß, and Ccl-2 mRNA. Furthermore, EA reduced the elevated expression of TRPV4 following MCAO. Treatment with the TRPV4 antagonist GSK219 mirrored the effects of EA in MCAO mice. Notably, the combination of EA and GSK219 did not demonstrate an additive or synergistic effect. CONCLUSION: EA may inhibit neuroinflammation and exhibit a protective effect against ischemic brain injury by suppressing TRPV4 and the subsequent M1 polarization of microglia/macrophages.


Assuntos
Isquemia Encefálica , Eletroacupuntura , AVC Isquêmico , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Camundongos , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Eletroacupuntura/métodos , Infarto da Artéria Cerebral Média/terapia , Infarto da Artéria Cerebral Média/metabolismo , Doenças Neuroinflamatórias , Traumatismo por Reperfusão/metabolismo , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/metabolismo , Canais de Cátion TRPV/genética
12.
Biomater Res ; 28: 0061, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161346

RESUMO

Management of myocardial ischemia-reperfusion injury (MIRI) in reperfusion therapy remains a major obstacle in the field of cardiovascular disease, but current available therapies have not yet been achieved in mitigating myocardial injury due to the complex pathological mechanisms of MIRI. Exogenous delivery of hydrogen sulfide (H2S) to the injured myocardium can be an effective strategy for treating MIRI due to the multiple physiologic functions of H2S, including anti-inflammatory, anti-apoptotic, and mitochondrial protective effects. Here, to realize the precise delivery and release of H2S, we proposed the targeted H2S-mediated gas therapy with pH-sensitive release property mediated by platelet membranes (PMs). In this study, a biomimetic functional poly(lactic-co-ethanolic acid) nanoparticle (RAPA/JK-1-PLGA@PM) was fabricated by loading rapamycin (RAPA; mTOR inhibitor) and JK-1 (H2S donor) and then coated with PM. In vitro observations were conducted including pharmaceutical evaluation, H2S release behaviors, hemolysis analysis, serum stability, cellular uptake, cytotoxicity, inhibition of myocardial apoptosis, and anti-inflammation. In vivo examinations were performed including targeting ability, restoration of cardiac function, inhibition of pathological remodeling, and anti-inflammation. RAPA/JK-1-PLGA@PM was successfully prepared with good size distribution and stability. Utilizing the natural infarct-homing ability of PM, RAPA/JK-1-PLGA@PM could be effectively targeted to the damaged myocardium. RAPA/JK-1-PLGA@PM continuously released H2S triggered by inflammatory microenvironment, which could inhibit cardiomyocyte apoptosis, realize the transition of pro-inflammation, and alleviate myocardial injury demonstrated in hypoxia/reoxygenation myocardial cell in vitro. Precise delivery and release of H2S attenuated inflammatory response and cardiac damage, promoted cardiac repair, and ameliorated cardiac function proven in MIRI mouse model in vivo. This research outlined the novel nanoplatform that combined immunosuppressant agents and H2S donor with the pH-sensitive release property, offering a promising therapeutic for MIRI treatment that leveraged the synergistic effects of gas therapy.

13.
Colloids Surf B Biointerfaces ; 234: 113746, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199187

RESUMO

Ischemic stroke is a neurological disease that leads to brain damage and severe cognitive impairment. In this study, extracellular vesicles(Ev) derived from mouse hippocampal cells (HT22) were used as carriers, and adenosine (Ad) was encapsulated to construct Ev-Ad to target the damaged hippocampus. The results showed that, Ev-Ad had significant antioxidant effect and inhibited apoptosis. In vivo, Ev-Ad reduced cell death and reversed inflammation in hippocampus of ischemic mice, and improved long-term memory and learning impairment by regulating the expression of the A1 receptor and the A2A receptor in the CA1 region. Thus, the developmental approach based on natural carriers that encapsulating Ad not only successfully restored nerves after ischemic stroke, but also improved cognitive impairment in the later stage of ischemic stroke convalescence. The development and design of therapeutic drugs provides a new concept and method for the treatment of cognitive impairment in the convalescent phase after ischemic stroke.


Assuntos
Vesículas Extracelulares , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Camundongos , Adenosina/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Hipocampo , Vesículas Extracelulares/metabolismo , Cognição , AVC Isquêmico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA