Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 67, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38262958

RESUMO

BACKGROUND: Tobacco mosaic virus (TMV) is a widely distributed viral disease that threatens many vegetables and horticultural species. Using the resistance gene N which induces a hypersensitivity reaction, is a common strategy for controlling this disease in tobacco (Nicotiana tabacum L.). However, N gene-mediated resistance has its limitations, consequently, identifying resistance genes from resistant germplasms and developing resistant cultivars is an ideal strategy for controlling the damage caused by TMV. RESULTS: Here, we identified highly TMV-resistant tobacco germplasm, JT88, with markedly reduced viral accumulation following TMV infection. We mapped and cloned two tobamovirus multiplication protein 2A (TOM2A) homeologs responsible for TMV replication using an F2 population derived from a cross between the TMV-susceptible cultivar K326 and the TMV-resistant cultivar JT88. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated loss-of-function mutations of two NtTOM2A homeologs almost completely suppressed TMV replication; however, the single gene mutants showed symptoms similar to those of the wild type. Moreover, NtTOM2A natural mutations were rarely detected in 577 tobacco germplasms, and CRISPR/Cas9-mediated variation of NtTOM2A led to shortened plant height, these results indicating that the natural variations in NtTOM2A were rarely applied in tobacco breeding and the NtTOM2A maybe has an impact on growth and development. CONCLUSIONS: The two NtTOM2A homeologs are functionally redundant and negatively regulate TMV resistance. These results deepen our understanding of the molecular mechanisms underlying TMV resistance in tobacco and provide important information for the potential application of NtTOM2A in TMV resistance breeding.


Assuntos
Vírus do Mosaico do Tabaco , Tobamovirus , Nicotiana , Melhoramento Vegetal , Horticultura
2.
Biochem Biophys Res Commun ; 522(1): 233-239, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31757426

RESUMO

Iron (Fe) is a major micronutrient which influences plant growth, development, quality and yield. Although basic helix-loop-helix (bHLH) transcription factors (TFs) which respond to iron deficiency have been identified, the molecular mechanisms have not been fully elucidated. In this study, a novel bHLH TF, NtbHLH1, was found to be induced by iron deficiency. Further analysis indicated that NtbHLH1 is localized to the nucleus and functions as a transcriptional activator. Moreover, overexpression of NtbHLH1 resulted in longer roots, altered rhizosphere pH and increased ferric-chelate reductase activity in iron deficient conditions. Overall these changes resulted in increased iron uptake relative to wild type plants. NtbHLH1 mutants, on the other hand, had an opposite phenotype. In addition, transcript levels of seven genes associated with iron deficiency response were higher in the NtbHLH1 overexpression transgenic plants and lower in ntbhlh1 relative to the WT under iron deficiency treatment. Taken together, these results demonstrated that NtbHLH1 plays a key role in iron deficiency response and they provide new insights into the molecular basis of iron homeostasis in tobacco.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica de Plantas , Ferro/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Homeostase , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/genética , Regulação para Cima
3.
Yi Chuan ; 36(1): 77-84, 2014 Jan.
Artigo em Zh | MEDLINE | ID: mdl-24846921

RESUMO

Pentatricopeptide repeats (PPRs) genes constitute one of the largest gene families in plants, which play a broad and essential role in plant growth and development. In this study, the protein sequences annotated by the tomato (S. lycopersicum L.) genome project were screened with the Pfam PPR sequences. A total of 471 putative PPR-encoding genes were identified. Based on the motifs defined in A. thaliana L., protein structure and conserved sequences for each tomato motif were analyzed. We also analyzed phylogenetic relationship, subcellular localization, expression and GO analysis of the identified gene sequences. Our results demonstrate that tomato PPR gene family contains two subfamilies, P and PLS, each accounting for half of the family. PLS subfamily can be divided into four subclasses i.e., PLS, E, E+ and DYW. Each subclass of sequences forms a clade in the phylogenetic tree. The PPR motifs were found highly conserved among plants. The tomato PPR genes were distributed over 12 chromosomes and most of them lack introns. The majority of PPR proteins harbor mitochondrial or chloroplast localization sequences, whereas GO analysis showed that most PPR proteins participate in RNA-related biological processes.


Assuntos
Genômica , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Sequência de Aminoácidos , Clonagem Molecular , Sequência Conservada , Evolução Molecular , Perfilação da Expressão Gênica , Ontologia Genética , Solanum lycopersicum/crescimento & desenvolvimento , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA