Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PeerJ ; 9: e11725, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277153

RESUMO

Quail eggs have been widely used in field experiments, mainly to study factors associated with the risk of nest predation. Some shortcomings of using quail eggs in this type of study have been previously addressed (e.g., these eggs might be too big for some predators of eggs of small birds). Here, we show experimental evidence of another shortcoming of the use of these eggs in field experiments. Quail eggs exposed to sunlight rapidly faded in colour after three days, both in the visible and UV spectra, and this change was related to the amount of solar radiation received. This caused changes in the camouflage of the eggs, which may be perceived by predators with different visual systems (dichromatic, trichromatic, and tetrachromatic (for both violet- and UV-sensitive species)). Therefore, the results of field studies of nest predation using quail eggs might be questioned in those cases in which the camouflage has been altered due to the rapid changes in coloration, as this can affect the resulting predation rates. We recommend that researchers planning to use quail eggs should perform a prospective assessment of changes in coloration of eggs exposed to environmental conditions in the nest sites used by the target species.

2.
Biol Open ; 8(12)2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31757805

RESUMO

Many studies addressing the use of nest materials by animals have focused on only one factor to explain its function. However, the consideration of more than one factor could explain the apparently maladaptive choice of nest materials that make nests conspicuous to predators. We experimentally tested whether there is a trade-off in the use of nest materials between the risks of egg predation versus protection from overheating. We studied the ground-nesting Kentish plover, Charadrius alexandrinus, in southern Spain. We added materials differing in thermal properties and coloration to the nests, thus affecting rates of egg heating, nest temperature and camouflage. Before these manipulations, adults selected materials that were lighter than the microhabitat, probably to buffer the risk of egg overheating. However, the adults did not keep the lightest experimental materials, probably because they reduced camouflage, and this could make the nests even more easily detectable to predators. In all nests, adults removed most of the experimental materials independently of their properties, so that egg camouflage returned to the original situation within a week of the experimental treatments. Although the thermal environment may affect the choice of nest materials by plovers, ambient temperatures were not so high at our study site as to determine the acceptance of the lightest experimental materials.

3.
Ecol Evol ; 8(16): 8019-8029, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30250681

RESUMO

Solar radiation is an important driver of animal coloration, not only because of the effects of coloration on body temperature but also because coloration may protect from the deleterious effects of UV radiation. Indeed, dark coloration may protect from UV, but may increase the risk of overheating. In addition, the effect of coloration on thermoregulation should change with egg size, as smaller eggs have higher surface-volume ratios and greater convective coefficients than larger eggs, so that small eggs can dissipate heat quickly. We tested whether the reflectance of eggshells, egg spottiness, and egg size of the ground-nesting Kentish plover Charadrius alexandrinus is affected by maximum ambient temperature and solar radiation at breeding sites. We measured reflectance, both in the UV and human visible spectrum, spottiness, and egg size in photographs from a museum collection of plover eggshells. Eggshells of lower reflectance (darker) were found at higher latitudes. However, in southern localities where solar radiation is very high, eggshells are also of dark coloration. Eggshell coloration had no significant relationship with ambient temperature. Spotiness was site-specific. Small eggs tended to be light-colored. Thermal constraints may drive the observed spatial variation in eggshell coloration, which may be lighter in lower latitudes to diminish the risk of overheating as a result of higher levels of solar radiation. However, in southern localities with very high levels of UV radiation, eggshells are of dark coloration likely to protect embryos from more intense UV radiation. Egg size exhibited variation in relation to coloration, likely through the effect of surface area-to-volume ratios on overheating and cooling rates of eggs. Therefore, differential effects of solar radiation on functions of coloration and size of eggshells may shape latitudinal variations in egg appearance in the Kentish plover.

4.
Science ; 357(6347): 199-201, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28706071

RESUMO

Networks with a modular structure are expected to have a lower risk of global failure. However, this theoretical result has remained untested until now. We used an experimental microarthropod metapopulation to test the effect of modularity on the response to perturbation. We perturbed one local population and measured the spread of the impact of this perturbation, both within and between modules. Our results show the buffering capacity of modular networks. To assess the generality of our findings, we then analyzed a dynamical model of our system. We show that in the absence of perturbations, modularity is negatively correlated with metapopulation size. However, even when a small local perturbation occurs, this negative effect is offset by a buffering effect that protects the majority of the nodes from the perturbation.

5.
PeerJ ; 4: e2779, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28028464

RESUMO

BACKGROUND: Functional traits are the primary biotic component driving organism influence on ecosystem functions; in consequence, traits are widely used in ecological research. However, most animal trait-based studies use easy-to-measure characteristics of species that are at best only weakly associated with functions. Animal-mediated pollination is a key ecosystem function and is likely to be influenced by pollinator traits, but to date no one has identified functional traits that are simple to measure and have good predictive power. METHODS: Here, we show that a simple, easy to measure trait (hairiness) can predict pollinator effectiveness with high accuracy. We used a novel image analysis method to calculate entropy values for insect body surfaces as a measure of hairiness. We evaluated the power of our method for predicting pollinator effectiveness by regressing pollinator hairiness (entropy) against single visit pollen deposition (SVD) and pollen loads on insects. We used linear models and AICC model selection to determine which body regions were the best predictors of SVD and pollen load. RESULTS: We found that hairiness can be used as a robust proxy of SVD. The best models for predicting SVD for the flower species Brassica rapa and Actinidia deliciosa were hairiness on the face and thorax as predictors (R2 = 0.98 and 0.91 respectively). The best model for predicting pollen load for B. rapa was hairiness on the face (R2 = 0.81). DISCUSSION: We suggest that the match between pollinator body region hairiness and plant reproductive structure morphology is a powerful predictor of pollinator effectiveness. We show that pollinator hairiness is strongly linked to pollination-an important ecosystem function, and provide a rigorous and time-efficient method for measuring hairiness. Identifying and accurately measuring key traits that drive ecosystem processes is critical as global change increasingly alters ecological communities, and subsequently, ecosystem functions worldwide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA