Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 32(10): 18257-18267, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858987

RESUMO

We present a source of indistinguishable photons at telecom wavelength, synchronized to an external clock, for the use in distributed quantum networks. We characterize the indistinguishability of photons generated in independent parametric down-conversion events using a Hong-Ou-Mandel interferometer, and show non-classical interference with coalescence, C = 0.83(5). We also demonstrate the synchronization to an external clock within sub-picosecond timing jitter, which is significantly shorter than the single-photon wavepacket duration of ≈ 35 ps. Our source enables scalable quantum protocols over multi-node, long-distance optical networks using network-based clock recovery systems.

2.
Opt Express ; 31(7): 11431-11446, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37155778

RESUMO

We investigate the coexistence of clock synchronization protocols with quantum signals in a common single-mode optical fiber. By measuring optical noise between 1500 nm to 1620 nm we demonstrate a potential for up to 100 quantum, 100 GHz wide channels coexisting with the classical synchronization signals. Both "White Rabbit" and pulsed laser-based synchronization protocols were characterized and compared. We establish a theoretical limit of the fiber link length for coexisting quantum and classical channels. The maximal fiber length is below approximately 100 km for off-the-shelf optical transceivers and can be significantly improved by taking advantage of quantum receivers.

3.
Sensors (Basel) ; 23(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37420770

RESUMO

In recent years, exoskeleton test methods for industrial exoskeletons have evolved to include simulated laboratory and field environments. Physiological, kinematic, and kinetic metrics, as well as subjective surveys, are used to evaluate exoskeleton usability. In particular, exoskeleton fit and usability can also impact the safety of exoskeletons and their effectiveness at reducing musculoskeletal injuries. This paper surveys the state of the art in measurement methods applied to exoskeleton evaluation. A notional classification of the metrics based on exoskeleton fit, task efficiency, comfort, mobility, and balance is proposed. In addition, the paper describes the test and measurement methods used in supporting the development of exoskeleton and exosuit evaluation methods to assess their fit, usability, and effectiveness in industrial tasks such as peg in hole, load align, and applied force. Finally, the paper includes a discussion of how the metrics can be applied towards a systematic evaluation of industrial exoskeletons, current measurement challenges, and future research directions.


Assuntos
Exoesqueleto Energizado , Traumatismos da Medula Espinal , Humanos , Fenômenos Biomecânicos , Indústrias , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA