RESUMO
OBJECTIVE: The family Paenibacillaceae is linked to the order Caryophanales. Paenibacillaceae members residing in compost or soil play crucial roles in nutrient recycling and breaking down complex organic materials. However, our understanding of Paenibacillaceae remains limited. METHODS: Strain SYSU GA230002T was conclusively identified using a polyphasic taxonomic approach frequently utilized in bacterial systematics. Standard microbiological techniques were employed to characterize the morphology and biochemistry of strain SYSU GA230002T. RESULTS: An anaerobic and gram--negative bacterium, designated SYSU GA230002T, was isolated from geothermally heated soil of Tengchong, Yunnan Province, south-west China. Phylogenetic analyses based on 16S rRNA gene sequences and genomes showed that strain SYSU GA230002T belongs to the family Paenibacillaceae. 16S rRNA gene sequence similarity (<94.0 %), ANI (<71.95 %) and AAI values (<58.67 %) between strain SYSU GA230002T with other members of the family were lower than the threshold values recommended for distinguishing novel species. Growth was observed at 30-45 °C (optimum, 37 °C), pH 7.0-8.0 (optimum, pH 7.5) and in 0-3.0 % (w/v) NaCl concentrations (optimum, 0 %). The major fatty acids detected were anteiso-C15:0, iso-C16:0 and iso-C17:0. The polar lipids included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, one unidentified phospholipid, one unidentified aminolipid and two unidentified glycolipids. The respiratory quinone was MK-7. The DNA G + C content of strain SYSU GA230002T was 49.87 %. CONCLUSION: Based on the results of morphological, physiological properties, and chemotaxonomic characteristics, this strain is proposed to represent a new species of a new genus Ferviditalea candida gen. nov., sp. nov. The type strain of the type species is SYSU GA230002T (=KCTC 25726T = GDMCC 1.4160T).
Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Fosfolipídeos , Filogenia , RNA Ribossômico 16S , Microbiologia do Solo , RNA Ribossômico 16S/genética , Ácidos Graxos/análise , Ácidos Graxos/química , China , DNA Bacteriano/genética , Fosfolipídeos/análise , Análise de Sequência de DNARESUMO
A novel anaerobic bacterium, designated SYSU GA19001T, was isolated from a hot spring sediment sample. Phylogenetic analysis indicated that the isolate belongs to the genus Clostridium, and showed the highest sequence similarity to Clostridium swellfunianum CICC 10730T (96.63â%) and Clostridium prolinivorans PYR-10T (96.11â%). Cells of strain SYSU GA19001T were Gram-stain-positive, spore-forming, rod-shaped (0.6-0.8×2.6-4.0 µm) and motile. Growth was observed at pH 5.0-9.0 (optimum, pH 7.0), 37-55 °C (optimum, 45 °C) and in NaCl concentrations of 0-2.0â% (optimum, 0â%). The genomic DNA G+C content was 31.62 %. The major cellular fatty acids of strain SYSU GA19001T were C14â:â0, iso-C15â:â0, C16â:â0 and summed feature 8. The prominent polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol. Meso-diaminopimelic acid was the diamino acid in peptidoglycan. Based on the results of phylogenetic, chemotaxonomic and phenotypic analyses, strain SYSU GA19001T represents a novel species of the genus Clostridium, for which the name Clostridium caldaquaticum sp. nov. is proposed. The type strain of the proposed novel species is SYSU GA19001T (=NBRC 115040T= CGMCC 1.17864T).
Assuntos
Ácidos Graxos , Fontes Termais , Ácidos Graxos/química , Fosfolipídeos/química , Fontes Termais/microbiologia , Filogenia , Composição de Bases , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , ClostridiumRESUMO
Two novel species, designated strains SYSU G04041T and SYSU G04536T, were isolated from hot spring sediments collected in Yunnan, PR China. Phenotypic and chemotaxonomic analyses, and whole-genome sequencing were used to determine the taxonomic positions of the candidate strains. Phylogenetic analysis using 16S rRNA gene sequence indicated that strain SYSU G04041T showed the highest sequence similarity to Thermomonas haemolytica A50-7-3T (97.5â%), and SYSU G04536T showed the highest sequence similarity to Thermomonas hydrothermalis SGM-6T (98.2â%). The strains could be differentiated from other species of the genus Thermomonas by their distinct phenotypic and genotypic characteristics. Cells of strains SYSU G04041T and SYSU G04536T were aerobic, motile and Gram-stain-negative. Growth both occurred optimally at 45 °C and pH 7.0 for SYSU G04041T and SYSU G04536T. In addition, the predominant respiratory quinone in both isolates was ubiquinone Q-8. The major fatty acids (>10â%) of strain SYSU G04041T were C16â:â0, iso-C15â:â0 and iso-C16â:â0, while the major fatty acids (>10â%) of strain SYSU G04536T were iso-C15â:â0 and iso-C16â:â0. The main detected polar lipids in strains SYSU G04041T and SYSU G04536T included phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The G+C contents of the genomic DNA of strains SYSU G04041T and SYSU G04536T based on draft genomic sequences were 72.5 and 68.3â%, respectively. On the basis of phenotypic, genotypic and phylogenetic data, strains SYSU G04041T and SYSU G04536T represent two novel species of the genus Thermomonas, for which the names Thermomonas flagellata sp. nov. and Thermomonas alba sp. nov. are proposed, with the type strains SYSU G04041T (=CGMCC 1.19366T=KCTC 92228T) and SYSU G04536T (=CGMCC 1.19367T=KCTC 82839T), respectively.
Assuntos
Fontes Termais , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
A thermophilic bacterium, designated strain SYSU G04325T, was isolated from a hot spring sediment in Yunnan, China. Polyphasic taxonomic analyses and whole-genome sequencing were used to determine the taxonomic position of the strain. Phylogenetic analysis using 16S rRNA gene sequences indicated that strain SYSU G04325T shows high sequence similarity to Thermoflexibacter ruber NBRC 16677T (86.2%). The strain can be differentiated from other species of the family Thermoflexibacteraceae by its distinct phenotypic and genotypic characteristics. Cells of the strain SYSU G04325T were observed to be aerobic, Gram-stain negative and filamentous. Growth was found to occur optimally at 45 ºC and pH 7.0. In addition, the respiratory quinone was identified as menaquinone-7, while the major fatty acids (> 10%) were identified as iso-C15:0, iso-C17:0 and Summed Feature 9 (iso-C17:1ω9c). The polar lipids detected included phosphatidylethanolamine, three unidentified phospholipids, one unidentified glycolipid, five unidentified aminolipids and four unidentified polar lipids. The G + C content of the genomic DNA was determined to be 47.6% based on the draft genome sequence. On the basis of phenotypic, genotypic and phylogenetic data, strain SYSU G04325T is concluded to represent a novel species of a novel genus in the family Thermoflexibacteraceae, for which the name Rhodoflexus caldus gen. nov., sp. nov. is proposed. The type strain of Rhodoflexus caldus is SYSU G04325T (= MCCC 1K06127T = KCTC 82848T).
Assuntos
Fontes Termais , Técnicas de Tipagem Bacteriana , China , DNA Bacteriano/genética , Ácidos Graxos/química , Fontes Termais/microbiologia , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
Phylogenomic analyses were performed on the nine species of the genus Meiothermus and four species of the genus Calidithermus. Phylogenetic analysis, low values of genomic relatedness indices and functional diversity analysis indicated that Meiothermus silvanus should not be classified within the clades for Meiothermus and Calidithermus but instead be reclassified as a new genus, for which we propose the name Allomeiothermus gen. nov., with Allomeiothermus silvanus comb. nov. as type species. In addition, the species Meiothermus cateniformans Zhang et al. (Int J Syst Evol Microbial 60:840-844, 2010) should also be reclassified as a later heterotypic synonym of Meiothermus taiwanensis Chen et al. (Int J Syst Evol Microbiol 52:1647-1654, 2002) emend. Raposo et al. (2019). This reclassification is based on the high genomic relatedness indices (98.8% ANI; 90.2% dDDH; 99% AAI) that are above the threshold values necessary for defining a new species, as well as on the observation of overlapping functions on Principal Coordinate Analysis plot generated from Clusters of Orthologous Genes.
Assuntos
Ácidos Graxos , Genômica , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
A Gram-positive strain APA H-16(1)T was isolated from a saline-alkali soil sample collected from Heilongjiang Province, China. Cells were rod shaped, non-motile, endospore forming, and aerobic. Growth occurred at 10-45 °C (optimum, 35 °C), pH 7.0-10.5 (optimum, pH 9.5), and could tolerate NaCl up to 15.0% (w/v). Strain showed low 16S rRNA gene sequence similarities with Alteribacter natronophilus (97.8%), Alteribacter aurantiacus (97.7%), and Alteribacter populi (97.1%). The cell wall peptidoglycan was meso-diaminopimelic acid. The predominant menaquinone was MK-7. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, unidentified aminophospholipids, unidentified phospholipid, and unidentified lipid. The major fatty acids were anteiso-C15:0, and iso-C15:0. The genomic G + C content was 45.1%. The average nucleotide identity and digital DNA-DNA hybridization values between strain APA H-16(1)T and the most closely related species were below the cut-off level (95-96%; 70%) for species delineation. Based on phenotypic, phylogenetic, chemotaxonomic, and genome comparison, strain APA H-16(1)T represents a novel species of the genus Alteribacter, for which the name Alteribacter salitolerans sp. nov. is proposed. The type strain is APA H-16(1)T (= KCTC 43228T = CICC 25092T).
Assuntos
Microbiologia do Solo , Solo , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
To date, very few attempts have been made to systematically compare the effectiveness of agricultural and nonagricultural organic wastes for aided phytostabilization of mine tailings under field conditions. In this study, we performed a field trial to compare the effectiveness of three agricultural organic wastes: chicken manure (CM), crop straw (CS), and spent mushroom compost (SMC), with that of three nonagricultural organic wastes, municipal sludge (MS), medicinal herb residues (MHR), and sweet sorghum vinasse (SSV) for aided phytostabilization of a Pb-Zn mine tailings pond in Hunan Province, China. Eight plant species naturally established in the vicinity of the mine were selected and seeded onto trial plots. It was found that the CM-amended plots had the highest (p < 0.05) vegetation cover (86%) and biomass production (881 g m-2), compared to other treatments. CM was also one of the best amendments in terms of improving soil nutrient status, increasing activities of soil enzymes, and immobilizing soil Pb. In addition, CM-amended plots were characterized by their higher microbial diversity and distinct microbial community structure as compared to the control plots. MS was the second best amendment in promoting vegetation cover (71%) and biomass production (461 g m-2), and it performed as well as CM for improving nutrient status, immobilizing heavy metals, and increasing the activities of enzymes in the mine tailings. Suggestions for further lines of research are made in order to develop future investigations.
RESUMO
Biodegradation stands as an eco-friendly and effective approach for organic contaminant remediation. However, research on microorganisms degrading sodium benzoate contaminants in extreme environments remains limited. In this study, we report to display the isolation of a novel hot spring enriched cultures with sodium benzoate (400 mg/L) as the sole carbon source. The results revealed that the phylum Pseudomonadota was the potential sodium benzoate degrader and a novel genus within the family Geminicoccaceae of this phylum. The isolated strain was named Benzoatithermus flavus SYSU G07066T and was isolated from HNT-2 hot spring samples. Genomic analysis revealed that SYSU G07066T carried benABC genes and physiological experiments indicated the ability to utilize sodium benzoate as a sole carbon source for growth, which was further confirmed by transcriptomic data with expression of benABC. Phylogenetic analysis suggested that Horizontal Gene Transfer (HGT) plays a significant role in acquiring sodium benzoate degradation capability among prokaryotes, and SYSU G07066T might have acquired benABC genes through HGT from the family Acetobacteraceae. The discovery of the first microorganism with sodium benzoate degradation function from a hot spring enhances our understanding of the diverse functions within the family Geminicoccaceae. This study unearths the first novel genus capable of efficiently degrading sodium benzoate and its evolution history at high temperatures, holding promising industrial applications, and provides a new perspective for further exploring the application potential of hot spring "microbial dark matter".
Assuntos
Biodegradação Ambiental , Fontes Termais , Filogenia , Benzoato de Sódio , Benzoato de Sódio/metabolismo , Fontes Termais/microbiologia , Poluentes Químicos da Água/metabolismo , MultiômicaRESUMO
Acidimicrobiia are widely distributed in nature and suggested to be autotrophic via the Calvin-Benson-Bassham (CBB) cycle. However, direct evidence of chemolithoautotrophy in Acidimicrobiia is lacking. Here, we report a chemolithoautotrophic enrichment from a saline lake, and the subsequent isolation and characterization of a chemolithoautotroph, Salinilacustristhrix flava EGI L10123T, which belongs to a new Acidimicrobiia family. Although strain EGI L10123T is autotrophic, neither its genome nor Acidimicrobiia metagenome-assembled genomes (MAGs) from the enrichment culture encode genes necessary for the CBB cycle. Instead, genomic, transcriptomic, enzymatic, and stable-isotope probing data hinted at the activity of the reversed oxidative TCA (roTCA) coupled with the oxidation of sulfide as the electron donor. Phylogenetic analysis and ancestral character reconstructions of Acidimicrobiia suggested that the essential CBB gene rbcL was acquired through multiple horizontal gene transfer events from diverse microbial taxa. In contrast, genes responsible for sulfide- or hydrogen-dependent roTCA carbon fixation were already present in the last common ancestor of extant Acidimicrobiia. These findings imply the possibility of roTCA carbon fixation in Acidimicrobiia and the ecological importance of Acidimicrobiia. Further research in the future is necessary to confirm whether these characteristics are truly widespread across the clade.
RESUMO
BACKGROUND: The Atribacterota are widely distributed in the subsurface biosphere. Recently, the first Atribacterota isolate was described and the number of Atribacterota genome sequences retrieved from environmental samples has increased significantly; however, their diversity, physiology, ecology, and evolution remain poorly understood. RESULTS: We report the isolation of the second member of Atribacterota, Thermatribacter velox gen. nov., sp. nov., within a new family Thermatribacteraceae fam. nov., and the short-term laboratory cultivation of a member of the JS1 lineage, Phoenicimicrobium oleiphilum HX-OS.bin.34TS, both from a terrestrial oil reservoir. Physiological and metatranscriptomics analyses showed that Thermatribacter velox B11T and Phoenicimicrobium oleiphilum HX-OS.bin.34TS ferment sugars and n-alkanes, respectively, producing H2, CO2, and acetate as common products. Comparative genomics showed that all members of the Atribacterota lack a complete Wood-Ljungdahl Pathway (WLP), but that the Reductive Glycine Pathway (RGP) is widespread, indicating that the RGP, rather than WLP, is a central hub in Atribacterota metabolism. Ancestral character state reconstructions and phylogenetic analyses showed that key genes encoding the RGP (fdhA, fhs, folD, glyA, gcvT, gcvPAB, pdhD) and other central functions were gained independently in the two classes, Atribacteria (OP9) and Phoenicimicrobiia (JS1), after which they were inherited vertically; these genes included fumarate-adding enzymes (faeA; Phoenicimicrobiia only), the CODH/ACS complex (acsABCDE), and diverse hydrogenases (NiFe group 3b, 4b and FeFe group A3, C). Finally, we present genome-resolved community metabolic models showing the central roles of Atribacteria (OP9) and Phoenicimicrobiia (JS1) in acetate- and hydrocarbon-rich environments. CONCLUSION: Our findings expand the knowledge of the diversity, physiology, ecology, and evolution of the phylum Atribacterota. This study is a starting point for promoting more incisive studies of their syntrophic biology and may guide the rational design of strategies to cultivate them in the laboratory. Video Abstract.
Assuntos
Carbono , Campos de Petróleo e Gás , Filogenia , Carbono/metabolismo , Campos de Petróleo e Gás/microbiologia , RNA Ribossômico 16S/genética , Genoma Bacteriano , Alcanos/metabolismoRESUMO
The great majority of microorganisms are as-yet-uncultivated, mostly found in extreme environments. High-throughput sequencing provides data-rich genomes from single-cell and metagenomic techniques, which has enabled researchers to obtain a glimpse of the unexpected genetic diversity of "microbial dark matter." However, cultivating microorganisms from extreme environments remains essential for dissecting and utilizing the functions of extremophiles. Here, we provide a straightforward protocol for efficiently isolating prokaryotic microorganisms from different extreme habitats (thermal, xeric, saline, alkaline, acidic, and cryogenic environments), which was established through previous successful work and our long-term experience in extremophile resource mining. We propose common processes for extremophile isolation at first and then summarize multiple cultivation strategies for recovering prokaryotic microorganisms from extreme environments and meanwhile provide specific isolation tips that are always overlooked but important. Furthermore, we propose the use of multi-omics-guided microbial cultivation approaches for culturing these as-yet-uncultivated microorganisms and two examples are provided to introduce how these approaches work. In summary, the protocol allows researchers to significantly improve the isolation efficiency of pure cultures and novel taxa, which therefore paves the way for the protection and utilization of microbial resources from extreme environments.
RESUMO
Rational cropping maintains high soil fertility and a healthy ecosystem. Soil microorganism is the controller of soil fertility. Meanwhile, soil microbial communities also respond to different cropping patterns. The mechanisms by which biotic and abiotic factors were affected by different cropping sequences remain unclear in the major grain-producing regions of northeastern China. To evaluate the effects of different cropping sequences under conventional fertilization practices on soil properties, microbial communities, and crop yield, six types of plant cropping systems were performed, including soybean monoculture, wheat-soybean rotation, wheat-maize-soybean rotation, soybean-maize-maize rotation, maize-soybean-soybean rotation and maize monoculture. Our results showed that compared with the single cropping system, soybean and maize crop rotation in different combinations or sequences can increase soil total organic carbon and nutrients, and promote soybean and maize yield, especially using soybean-maize-maize and maize-soybean-soybean planting system. The 16S rRNA and internal transcribed spacer (ITS) amplicon sequencing showed that different cropping systems had different effects on bacterial and fungal communities. The bacterial and fungal communities of soybean monoculture were less diverse when compared to the other crop rotation planting system. Among the different cropping sequences, the number of observed bacterial species was greater in soybean-maize-maize planting setup and fungal species in maize-soybean-soybean planting setup. Some dominant and functional bacterial and fungal taxa in the rotation soils were observed. Network-based analysis suggests that bacterial phyla Acidobacteria and Actinobacteria while fungal phylum Ascomycota showed a positive correlation with other microbial communities. The phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) result showed the presence of various metabolic pathways. Besides, the soybean-maize-maize significantly increased the proportion of some beneficial microorganisms in the soil and reduced the soil-borne animal and plant pathogens. These results warrant further investigation into the mechanisms driving responses of beneficial microbial communities and their capacity on improving soil fertility during legume cropping. The present study extends our understanding of how different crop rotations effect soil parameters, microbial diversity, and metabolic functions, and reveals the importance of crop rotation sequences. These findings could be used to guide decision-making from the microbial perspective for annual crop planting and soil management approaches.
RESUMO
Microbes are widespread in the sea that covers more than two-thirds of the earth's surface and most microorganisms living in the marine environment have yet to be cultured. Previous studies showed that drying treatment, a strategy of sample pre-treatment widely applied in microbial isolation and incubation, may alter the cultivable microbial diversity, such as Actinomycetota, essential for exploring novel secondary metabolites from the marine environment, isolated from drying-treated samples. However, whether drying treatments actually can change microbial community diversity and how the drying treatments of samples influence the cultivable microbial diversity of marine samples have not yet adequately been evaluated. Here, three marine sediment samples were dried and incubated at 28 ºC, 37 ºC, and 45 ºC, and the microbial diversity was assessed with high-throughput sequencing. Our results suggested that drying treatments had different effects on different genera and some potential novel species could be cultured only from drying-treated samples, including the novel members from the families Paenibacillaceae and Thermoactinomycetaceae. Non-metric multidimensional scaling analysis showed that the treated samples were clustered according to the cultivation temperatures rather than the drying conditions at high cultivation temperatures. However, at the cultivation temperatures of 28 ºC, drying treatments were the larger separation between cultivable microbial communities in the process of microbial isolation. These results showed that the drying treatments influenced the cultivated microbes in a taxon-specific pattern and extended potential novel taxa. Combining high-throughput sequencing to various drying conditions and incubation temperatures, this study provides new insight into the effects of drying treatment on the cultivable microbial diversity of marine sediments.
Assuntos
Microbiota , Água do Mar , Humanos , Biodiversidade , Bactérias , Sedimentos Geológicos , RNA Ribossômico 16S/genéticaRESUMO
Candidate bacterial phylum Omnitrophota has not been isolated and is poorly understood. We analysed 72 newly sequenced and 349 existing Omnitrophota genomes representing 6 classes and 276 species, along with Earth Microbiome Project data to evaluate habitat, metabolic traits and lifestyles. We applied fluorescence-activated cell sorting and differential size filtration, and showed that most Omnitrophota are ultra-small (~0.2 µm) cells that are found in water, sediments and soils. Omnitrophota genomes in 6 classes are reduced, but maintain major biosynthetic and energy conservation pathways, including acetogenesis (with or without the Wood-Ljungdahl pathway) and diverse respirations. At least 64% of Omnitrophota genomes encode gene clusters typical of bacterial symbionts, suggesting host-associated lifestyles. We repurposed quantitative stable-isotope probing data from soils dominated by andesite, basalt or granite weathering and identified 3 families with high isotope uptake consistent with obligate bacterial predators. We propose that most Omnitrophota inhabit various ecosystems as predators or parasites.
Assuntos
Nanopartículas Calcificantes , Microbiota , Humanos , Nanopartículas Calcificantes/metabolismo , Bactérias/metabolismo , Microbiota/genéticaRESUMO
Biological denitrification is a significant process in nitrogen biogeochemical cycle of terrestrial geothermal environments, and Thermus species have been shown to be crucial heterotrophic denitrifier in hydrothermal system. Five Gram-stain negative, aerobic and rod-shaped thermophilic bacterial strains were isolated from hot spring sediments in Tibet, China. Phylogenetic analysis based on 16S rRNA gene and whole genome sequences indicated that these isolates should be assigned to the genus Thermus and were most closely related to Thermus caldifontis YIM 73026T, and Thermus brockianus YS38T. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the five strains and the type strains of the genus Thermus were lower than the threshold values (95% and 70%, respectively) recommended for bacterial species, which clearly distinguished the five isolates from other species of the genus Thermus and indicated that they represent independent species. Colonies are circular, convex, non-transparent. Cell growth occurred at 37-80 °C (optimum, 60-65 °C), pH 6.0-8.0 (optimum, pH 7.0) and with 0-2.0% (w/v) NaCl (optimum, 0-0.5%). Denitrification genes (narG, nirK, nirS, and norB genes) detected in their genomes indicated their potential function in nitrogen metabolism. The obtained results combined with those of morphological, physiological, and chemotaxonomic characteristics, including the menaquinones, polar lipids, and cellular fatty acids showed that the isolates are proposed as representing five novel species of the genus Thermus, which are proposed as Thermus hydrothermalis sp. nov. SYSU G00291T, Thermus neutrinimicus sp. nov. SYSU G00388T, Thermus thalpophilus sp. nov. SYSU G00506T, Thermus albus sp. nov. SYSU G00608T, Thermus altitudinis sp. nov. SYSU G00630T.
Assuntos
Fontes Termais , Fontes Termais/microbiologia , RNA Ribossômico 16S/genética , Filogenia , Composição de Bases , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Análise de Sequência de DNA , Fosfolipídeos/análise , Thermus , Ácidos Graxos/análise , Bactérias/genética , NitrogênioRESUMO
Biological denitrification is a crucial process in the nitrogen biogeochemical cycle, and Thermus has been reported to be a significant heterotrophic denitrifier in terrestrial geothermal environments. However, neither the denitrification potential nor the evolutionary history of denitrification genes in the genus Thermus or phylum Deinococcota is well understood. Here, we performed a comparative analysis of 23 Thermus genomes and identified denitrification genes in 15 Thermus strains. We confirmed that Thermus harbors an incomplete denitrification pathway as none of the strains contain the nosZ gene. Ancestral character state reconstructions and phylogenetic analyses showed that narG, nirS, and norB genes were acquired by the last common ancestor of Thermales and were inherited vertically. In contrast, nirK of Thermales was acquired via two distinct horizontal gene transfers from Proteobacteria to the genus Caldithermus and from an unknown donor to the common ancestor of all known Thermus species except Thermus filiformis. This study expands our understanding of the genomic potential for incomplete denitrification in Thermus, revealing a largely vertical evolutionary history of the denitrification pathway in the Thermaceae, and supporting the important role for Thermus as an important heterotrophic denitrifier in geothermal environments.
RESUMO
Owing to its sustainability and low cost, direct revegetation (DR) has been considered a promising alternative to capped revegetation (CR) for dealing with the serious environmental problem derived from various types of mine wastelands that are widespread in the world. However, a direct comparison of the performance of these two revegetation approaches for reclamation of extremely acidic mine wastelands and the underlying mechanisms is still lacking. To bridge this critical knowledge gap, we established 5000 m2 of vegetation on a highly acidified (pH < 3) Pb/Zn mine tailings pond employing both CR and DR schemes (2500 m2 for each scheme). We then profiled the structure, ecological network and function of soil microbial communities associated with two dominant plant species of the vegetations via high-throughput sequencing. Our results showed that CR and DR achieved a vegetation coverage of 59.7% and 90.5% within two years, respectively. This pattern was accompanied by higher concentrations of plant nutrients and lower acidification potentials in topsoils of the rhizospheres of the vegetation established by DR compared to those of CR. Revegetation approach, rather than plant identity, mostly affected the structure, ecological network and function of soil microbial community in the mine tailings pond. Rhizosphere soils of the vegetation established by DR generally had higher microbial diversity, higher relative abundances of dominant microbial phyla (e.g. Nitrospirae) that can aid plant uptake of nutrients, more complicated microbial interactive networks and more microbial genes responsible for nutrient cycling than those by CR. As the first report on a direct comparison of CR and DR schemes for reclamation of an extremely acidic mine wasteland, our study has important implications for not only the understanding of microbial ecology in revegetated mine wastelands but also the further development of sustainable revegetation schemes.
Assuntos
Microbiota , Poluentes do Solo/análise , Biodegradação Ambiental , Lagoas , Solo , Microbiologia do SoloRESUMO
Several abundant but yet uncultivated bacterial groups exist in extreme iron- and sulfur-rich environments, and the physiology, biodiversity, and ecological roles of these bacteria remain a mystery. Here we retrieved four metagenome-assembled genomes (MAGs) from an artificial acid mine drainage (AMD) system, and propose they belong to a new deltaproteobacterial order, Candidatus Acidulodesulfobacterales. The distribution pattern of Ca. Acidulodesulfobacterales in AMDs across Southeast China correlated strongly with ferrous iron. Reconstructed metabolic pathways and gene expression profiles showed that they were likely facultatively anaerobic autotrophs capable of nitrogen fixation. In addition to dissimilatory sulfate reduction, encoded by dsrAB, dsrD, dsrL, and dsrEFH genes, these microorganisms might also oxidize sulfide, depending on oxygen concentration and/or oxidation reduction potential. Several genes with homology to those involved in iron metabolism were also identified, suggesting their potential role in iron cycling. In addition, the expression of abundant resistance genes revealed the mechanisms of adaptation and response to the extreme environmental stresses endured by these organisms in the AMD environment. These findings shed light on the distribution, diversity, and potential ecological role of the new order Ca. Acidulodesulfobacterales in nature.