RESUMO
Hydrogen peroxide (H2O2) has emerged as a kind of multi-functional green oxidants with extensive industrial utility. Oxidized carbon materials exhibit promises as electrocatalysts in the two-electron (2e-) oxygen reduction reaction (ORR) for H2O2 production. However, the precise identification and fabrication of active sites that selectively yield H2O2 present a serious challenge. Herein, a structural engineering strategy is employed to synthesize oxygen-doped carbon quantum dots (o-CQD) for the 2e- ORR. The surface electronic structure of the o-CQDs is systematically modulated by varying isomerization precursors, thereby demonstrating excellent electrocatalyst performance. Notably, o-CQD-3 emerges as the most promising candidate, showcasing a remarkable H2O2 selectivity of 96.2% (n = 2.07) at 0.68 V versus RHE, coupled with a low Tafel diagram of 66.95 mV dec-1. In the flow cell configuration, o-CQD-3 achieves a H2O2 productivity of 338.7 mmol gcatalyst -1 h-1, maintaining consistent production stability over an impressive 120-hour duration. Utilizing in situ technology and density functional theory calculations, it is unveil that edge sites of o-CQD-3 are facilely functionalized by C-O-C groups under alkaline ORR conditions. This isomerization engineering approach advances the forefront of sustainable catalysis and provides a profound insight into the carbon-based catalyst design for environmental-friendly chemical synthesis processes.
RESUMO
Aim: This study aimed to explore the importance of an MRI-based radiomics nomogram in predicting the progression-free survival (PFS) of endometrial cancer.Methods: Based on clinicopathological and radiomic characteristics, we established three models (clinical, radiomics and combined model) and developed a nomogram for the combined model. The Kaplan-Meier method was utilized to evaluate the association between nomogram-based risk scores and PFS.Results: The nomogram had a strong predictive ability in calculating PFS with areas under the curve (ROC) of 0.905 and 0.901 at 1 and 3 years, respectively. The high-risk groups identified by the nomogram-based scores had shorter PFS compared with the low-risk groups.Conclusion: The radiomics nomogram has the potential to serve as a noninvasive imaging biomarker for predicting individual PFS of endometrial cancer.
[Box: see text].
RESUMO
BACKGROUND: The value of the widely applied maternal cytomegalovirus (CMV) serological testing approach in predicting intrauterine transmission in highly seroprevalent regions remains unknown. METHODS: A nested caseâcontrol study was conducted based on a maternal-child cohort study. Newborns with congenital CMV (cCMV) infection were included, and each of them was matched to 3 newborns without cCMV infection. Retrospective samples were tested for immunoglobulin G (IgG) avidity and immunoglobulin M (IgM) antibodies in maternal serum and CMV DNA in maternal blood and urine to analyse their associations with cCMV infection. RESULTS: Forty-eight newborns with cCMV infection and 144 matched newborns without infection were included in the study. Maternal IgM antibodies and IgG avidity during pregnancy were not statistically associated with intrauterine transmission. The presence of CMV DNAemia indicated a higher risk of cCMV infection, with the OR values as 5.7, 6.5 and 13.0 in early, middle and late pregnancy, respectively. However, the difference in CMV shedding rates in transmitters and nontransmitters was not significant in urine. CONCLUSION: The value of current maternal CMV serological testing in regions with high seropositivity rates is very limited and should be reconsidered. The detection of DNAemia would be helpful in assessing the risk of intrauterine transmission.
RESUMO
Post-combustion flue gas (mainly containing 5-40% CO2 balanced by N2 ) accounts for about 60% global CO2 emission. Rational conversion of flue gas into value-added chemicals is still a formidable challenge. Herein, this work reports a ß-Bi2 O3 -derived bismuth (OD-Bi) catalyst with surface coordinated oxygen for efficient electroreduction of pure CO2 , N2, and flue gas. During pure CO2 electroreduction, the maximum Faradaic efficiency (FE) of formate reaches 98.0% and stays above 90% in a broad potential of 600 mV with a long-term stability of 50 h. Additionally, OD-Bi achieves an ammonia (NH3 ) FE of 18.53% and yield rate of 11.5 µg h-1 mgcat -1 in pure N2 atmosphere. Noticeably, in simulated flue gas (15% CO2 balanced by N2 with trace impurities), a maximum formate FE of 97.3% is delivered within a flow cell, meanwhile above 90% formate FEs are obtained in a wide potential range of 700 mV. In-situ Raman combined with theory calculations reveals that the surface coordinated oxygen species in OD-Bi can drastically activate CO2 and N2 molecules by selectively favors the adsorption of *OCHO and *NNH intermediates, respectively. This work provides a surface oxygen modulation strategy to develop efficient bismuth-based electrocatalysts for directly reducing commercially relevant flue gas into valuable chemicals.
RESUMO
Dialysis is an artificial process to remove excess urea toxins from the body through adsorption or conversion. Urea adsorption by emergent 2D materials such as MXenes is one probable approach. Based on density functional theory (DFT) studies, the surface of Ti3C2Tx (T = -O- and -OH) MXenes is not optimum for urea adsorption. Therefore, functionalization with 3d metal dopants (Cu, Co, and Ni) is proposed to improve their urea adsorption ability. DFT calculations indicate that oxygen-terminated Ti3C2O2 has a much better urea adsorption ability when doped with Cu, Co, and Ni, with adsorption energy (Eads) values of -2.11 eV, -1.90 eV and -1.72 eV, respectively. These adsorption energies are much more favourable than that of the undoped one (Eads = -0.52 eV). To verify the calculation results, MILD Ti3C2Tx, or MXenes synthesized via the safer and easier minimally intensive layer delamination (MILD) method, were utilized to simulate Ti3C2O2 since they have -O- termination as the dominant species. Experimentally, the adsorption studies found that low concentration of Cu, Co, and Ni on MILD Ti3C2Tx showed a urea removal efficiency of 21.9%, 6.0% and 0.2%, respectively, much better than 0% removal efficiency of unfunctionalized Ti3C2Tx. Therefore, both DFT calculations and experiments showed that various metal functionalized MXenes have a similar trend for urea adsorption, highlighting the feasibility of using the computational approach to predict urea adsorption and further opening a new promising direction for the urea adsorption. Finally, this study is also the first to examine synergistic effects of metal dopants and surface terminations on MXenes for urea adsorption.
RESUMO
Background: Ferroptosis, a newly discovered mode of cell death, emerges as a new target for atherosclerosis (AS). Long noncoding RNAs (lncRNAs) are involved in the regulation of ferroptosis. In our previous study, lnc-MRGPRF-6:1 was highly expressed in patients with coronary atherosclerotic disease (CAD) and closely associated with macrophage-mediated inflammation in AS. In the present study, we aim to investigate the role of lnc-MRGPRF-6:1 in oxidized-low-density lipoprotein (ox-LDL)-induced macrophage ferroptosis in AS. Methods: Firstly, ox-LDL-treated macrophages were used to simulate macrophage injury in AS. Then, ferroptosis-related biomarkers and mitochondrial morphology were detected and observed in ox-LDL-treated macrophages. Subsequently, we constructed lnc-MRGPRF-6:1 knockdown and overexpression of THP-1-derived macrophages and investigated the role of lnc-MRGPRF-6:1 in ox-LDL-induced ferroptosis. Then human monocytes were isolated successfully and were used to explore the role of lnc-MRGPRF-6:1 in macrophage ferroptosis. Likely, we constructed lnc-MRGPRF-6:1 knockdown and overexpression of human monocyte-derived macrophages and detected the expression levels of ferroptosis-related biomarkers. Then, transcriptome sequencing, literature searching, and following quantitative real-time polymerase chain reaction and western blot were implemented to explore specific signaling pathway in the process. It was demonstrated that lnc-MRGPRF-6:1 may regulate ox-LDL-induced macrophage ferroptosis through glutathione peroxidase 4 (GPX4). Eventually, the correlation between lnc-MRGPRF-6:1 and GPX4 was measured in monocyte-derived macrophages of CAD patients and controls. Results: The ox-LDL-induced injury in macrophages was involved in ferroptosis. The knockdown of lnc-MRGPRF-6:1 could alleviate ox-LDL-induced ferroptosis in macrophages. Meanwhile, the overexpression of lnc-MRGPRF-6:1 could intensify ox-LDL-induced ferroptosis. Furthermore, the knockdown of lnc-MRGPRF-6:1 could alleviate the decrease of GPX4 induced by RAS-selective lethal compounds 3 (RSL-3). These indicated that lnc-MRGPRF-6:1 may suppress GPX4 to induce macrophage ferroptosis. Eventually, lnc-MRGPRF-6:1 was highly expressed in the monocyte-derived macrophages of CAD patients and was negatively correlated with the expression of GPX4. Conclusion: lnc-MRGPRF-6:1 can promote ox-LDL-induced macrophage ferroptosis through inhibiting GPX4.
Assuntos
Aterosclerose , Doença da Artéria Coronariana , Ferroptose , RNA Longo não Codificante , Humanos , Doença da Artéria Coronariana/genética , Lipoproteínas LDL/farmacologia , Macrófagos , Monócitos , RNA Longo não Codificante/genéticaRESUMO
BACKGROUND: Macrophage-mediated inflammation plays an essential role in the development of atherosclerosis (AS). Long noncoding RNAs (lncRNAs), as crucial regulators, participate in this process. We identified that lnc-MRGPRF-6:1 was significantly upregulated in the plasma exosomes of coronary atherosclerotic disease (CAD) patients in a preliminary work. In the present study, we aim to assess the role of lnc-MRGPRF-6:1 in macrophage-mediated inflammatory process of AS. METHODS: The correlation between lnc-MRGPRF-6:1 and inflammatory factors was estimated firstly in plasma exosomes of CAD patients. Subsequently, we established lnc-MRGPRF-6:1 knockout macrophage model via the CRISPR/Cas9 system. We then investigated the regulatory effects of lnc-MRGPRF-6:1 on macrophage polarization and foam cell formation. Eventually, transcriptome analysis by RNA sequencing was carried out to explore the contribution of differential genes and signaling pathways in this process. RESULTS: lnc-MRGPRF-6:1 was highly expressed in the plasma exosomes of CAD patients and was positively correlated with the expression of inflammatory cytokines in plasma. lnc-MRGPRF-6:1 inhibition significantly reduced the formation of foam cells. The expression of lnc-MRGPRF-6:1 was upregulated in M1 macrophage, and lnc-MRGPRF-6:1 knockout decreased the polarization of M1 macrophage. lnc-MRGPRF-6:1 regulates macrophage polarization via the TLR4-MyD88-MAPK signaling pathway. CONCLUSIONS: lnc-MRGPRF-6:1 knockdown can inhibit M1 polarization of macrophage and inflammatory response through the TLR4-MyD88-MAPK signaling pathway. lnc-MRGPRF-6:1 is a vital regulator in macrophage-mediated inflammatory process of AS.
Assuntos
RNA Longo não Codificante , Receptor 4 Toll-Like , Humanos , Ativação de Macrófagos , Macrófagos/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismoRESUMO
Highly efficient noble-metal-free electrocatalysts for oxygen reduction reaction (ORR) are essential to reduce the costs of fuel cells and metal-air batteries. Herein, a single-atom Ce-N-C catalyst, constructed of atomically dispersed Ce anchored on N-doped porous carbon nanowires, is proposed to boost the ORR. This catalyst has a high Ce content of 8.55 wt % and a high activity with ORR half-wave potentials of 0.88 V in alkaline media and 0.75 V in acidic electrolytes, which are comparable to widely studied Fe-N-C catalysts. A Zn-air battery based on this material shows excellent performance and durability. Density functional theory calculations reveal that atomically dispersed Ce with adsorbed hydroxyl species (OH) can significantly reduce the energy barrier of the rate-determining step resulting in an improved ORR activity.
RESUMO
BACKGROUND: Previous works have observed that younger infants with chronic hepatitis B virus (HBV) infection are more responsive to antiviral treatment. However, the underlying mechanism remains unclear. In this study, the dynamic changes of HBV quasispecies in infants with immunoprophylaxis failure were investigated to provide virological explanations for clinical management on infantile antiviral therapy. METHODS: Thirteen 7-month-old infants with immunoprophylaxis failure and their mothers were enrolled from a prospective cohort, and 8 of them were followed up to 3 years old. The sequences of HBV quasispecies were analyzed by the full-length genome clone-based sequencing, and compared among mothers and their infants at different ages. RESULTS: The results revealed that the complexity, mutation frequency and genetic distance of HBV quasispecies decreased significantly at full-length, partial open reading frames and regulatory regions of HBV genome at nucleotide level in 7-month-old infants comparing with their mothers, whereas increased significantly to near the maternal level when infants grew up to 3 years old. Furthermore, similar changes were also found in Core, PreS2, RT and P regions of HBV genome at amino acid level, especially for potential NAs-resistant mutants in RT region and immune-escape mutants in Core and PreS2 regions. CONCLUSIONS: This study uncovered the evolution of HBV quasispecies in infancy after mother-to-child transmission, which may provide the virological evidence for explaning that younger children are more responsive to antiviral therapy.
Assuntos
Hepatite B Crônica , Hepatite B , Criança , Estudos de Coortes , DNA Viral , Feminino , Hepatite B/prevenção & controle , Vírus da Hepatite B/genética , Hepatite B Crônica/tratamento farmacológico , Humanos , Lactente , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Estudos Prospectivos , Quase-EspéciesRESUMO
Previous studies have implicated protein tyrosine phosphatase receptor type O (PTPRO) as a key regulator in inflammation-associated diseases; however, its role in ulcerative colitis (UC) remains largely unknown. Thus, we aim to elucidate the potential role and underlying mechanism of PTPRO in UC. In this study, increased expression of PTPRO, toll-like receptor (TLR4) and inflammatory cytokines were observed in mucosal tissues (MTs) from inflamed areas and lamina propria mononuclear cells (LPMCs) of patients with UC compared with those from healthy controls. Then, it was manifested that PTPRO promoted the expression of TLR4 and proinflammatory cytokines in lipopolysaccharide-induced (LPS-induced) inflammatory macrophage model. Besides, PTPRO inhibited the proliferation of intestinal epithelial cells (IECs) but enhanced the apoptosis of IECs in macrophages. Moreover, levels of phosphorylated nuclear factor κB (NF-κB)/p65 and inhibitor of NF-κB α (IκBα) were more significantly increased in PTPRO overexpressed macrophages. In addition, the area under receiver operating characteristic curve was 0.807 (95%CI = 0.686-0.958, P < .001) suggesting PTPRO as an ideal diagnostic marker for UC. Taken these, the present study shows strong evidence that PTPRO exaggerates inflammation in UC via TLR4/NF-κB signaling pathway.
Assuntos
Colite Ulcerativa/complicações , Inflamação/patologia , Macrófagos/patologia , NF-kappa B/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Receptor 4 Toll-Like/metabolismo , Apoptose , Estudos de Casos e Controles , Citocinas/metabolismo , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Macrófagos/metabolismo , NF-kappa B/genética , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Receptor 4 Toll-Like/genéticaRESUMO
BACKGROUND AND PURPOSE: To investigate cavitation of symptomatic acute single small subcortical infarctions (SSSI). METHODS: Acute SSSI were diagnosed with magnetic resonance (MR) diffusion-weighted imaging (DWI) combined with apparent diffusion coefficient (ADC) sequence on follow-up MR imaging. Cavitation of the acute SSSI was comprehensively viewed on FLAIR, T2-, and T1-weighted sequences. RESULTS: We enrolled 123 patients with acute SSSI. The follow-up median interval was 303 (125-390) days. The lesions of SSSI evolved into cavitation in 93 patients (75.6%), evolved into WMHs in nine patients (7.3%), and were no visible in 21 patients (17.1%). Cavitation was independently associated with larger infarct diameter on baseline DWI [odds ratio (OR), 1.250, 95% CI (1.078-1.451), P = 0.003], higher score of baseline old lacunar infarct [OR 3.44, 95% CI (1.49-7.91), P = 0.004], and lower rate of dyslipidemia [OR 0.30, 95% CI (0.10-0.76), P = 0.013]. CONCLUSION: Cavitation occurred more in the setting of small vessel diseased brain and less in the SSSI of possible atherosclerotic etiology. This suggested that the etiology of infarct was associated with cavitation after acute SSSI.
Assuntos
Infarto Cerebral , Acidente Vascular Cerebral Lacunar , Encéfalo , Infarto Cerebral/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética , Acidente Vascular Cerebral Lacunar/diagnóstico por imagemRESUMO
Accumulating data have implicated that long noncoding RNA (lncRNA) plays an important role in osteoarthritis (OA), which may function as a competitive endogenous RNA (ceRNA) of microRNAs (miRNAs). lncRNA IGHCγ1 has been demonstrated to regulate inflammation and autoimmunity. Nonetheless, the altering effect of IGHCγ1 in OA remains unclear. This study is aimed at investigating the mechanism and function of lncRNA IGHCγ1 in OA. CCK-8, EdU, and transwell assays were used to estimate macrophage proliferation and migration. Fluorescence in situ hybridization (FISH) was performed to estimate the local expression of lncRNA IGHCγ1 in macrophages. Luciferase reporter assay was adopted to validate the ceRNA role of IGHCγ1 as miRNA sponge. lncRNA IGHCγ1 was primarily localized in macrophage cytoplasm and upregulated in OA. miR-6891-3p inhibited macrophage proliferation, migration, and inflammatory response by targeting TLR4, while lncRNA IGHCγ1 promoted TLR4 expression by functioning as a ceRNA for miR-6891-3p through the NF-κB signal in macrophages. This study strongly supports that lncRNA IGHCγ1 regulates inflammatory response via regulating the miR-6891-3p/TLR4/NF-κB axis in macrophages.
Assuntos
Macrófagos/metabolismo , MicroRNAs/metabolismo , Osteoartrite/metabolismo , RNA Longo não Codificante/metabolismo , Receptor 4 Toll-Like/metabolismo , Adulto , Idoso , Apoptose/efeitos dos fármacos , Autoimunidade , Estudos de Casos e Controles , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Inflamação , Masculino , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Transdução de Sinais/genéticaRESUMO
Accumulating data have suggested exosome-delivered microRNAs (miRNAs) play critical role in carcinogenesis and cancer progression. However, little is known about the influence of exosomal miR-6803-5p on the development and prognosis of colorectal cancer (CRC). Levels of serum exosomal miR-6803-5p were determined by microarray analysis and verified by quantitative real-time PCR (qRT-PCR). Outcomes of overall survival (OS) and disease-free survival (DFS) of CRC patients were estimated by Kaplan-Meier analysis. We used cox regression analysis to investigate the association between exosomes-encapsulated miR-6803-5p and the clinicopathological factors of CRC patients. The exosomal miR-6803-5p was significantly increased in serum samples from patients with CRC in contrast to healthy controls. Significantly higher levels of serum exosomal miR-6803-5p were observed in CRC patients at later TNM stage or with lymph node metastasis as well as liver metastasis. Patients with elevated levels of serum exosomal miR-6803-5p had much poorer OS and DFS. Cox regression analysis revealed high levels of exosomal miR-6803-5p was associated with poor prognosis in CRC independent of other confounding factors. Thus, exosomal miR-6803-5p is a potential diagnostic and prognostic biomarker for patients with CRC.
Assuntos
Neoplasias Colorretais/sangue , Neoplasias Colorretais/diagnóstico , Exossomos/metabolismo , MicroRNAs/sangue , RNA Neoplásico/sangue , Adulto , Idoso , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Intervalo Livre de Doença , Feminino , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Estudos Retrospectivos , Taxa de SobrevidaRESUMO
BACKGROUND/AIMS: Critical roles of phosphatase receptor type O (PTPRO) and toll-like receptor 4 (TLR4) have been implicated in inflammation. However, little is known about their functional effects on atherosclerosis (AS). We aim to study their potential function in AS. METHODS: An oxidized low-density lipoprotein (ox-LDL) induced AS model constructed with PTPRO over-expressing RAW264.7 cells and PTPRO knockout macrophages. Cell apoptosis was assayed by flow cytometry and fatty accumulation was evaluated by oil red staining. The production of ROS (reactive oxygen species), SOD (superoxide dismutase), MDA (malondialdehyde), TC (Triglyceride), and TG (total cholesterol) was evaluated. Western blot was performed to detect the expression of CD36, TLR4 and nuclear factor kB (NF-κB). RESULTS: PTPRO expression was promoted in a dose-dependent and time-dependent manner following ox-LDL challenging. In PTPRO-over-expressing cells, CD36 expression and the level of oil-red staining, TC and TG were increased; ROS production, MDA and level of cell apoptosis were improved, but SOD was reduced. However, in PTPRO knockout cells opposite results were found. TLR4 and NF-κB/p65 phosphorylation was significantly enhanced in PTPRO over-expressing cells, while significantly down-regulated in PTPRO knockout cells. CONCLUSION: PTPRO plays ital roles in AS via promoting ox-LDL induced oxidative stress and cell apoptosis through TLR4/NF-κB pathway.
Assuntos
Aterosclerose/genética , Colesterol/genética , Inflamação/genética , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/biossíntese , Receptor 4 Toll-Like/biossíntese , Animais , Apoptose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Colesterol/metabolismo , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Inflamação/metabolismo , Inflamação/patologia , Lipoproteínas LDL/genética , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Camundongos , Estresse Oxidativo/genética , Células RAW 264.7 , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Receptor 4 Toll-Like/genéticaRESUMO
Supported nonprecious metal catalysts such as copper (Cu) are promising replacements for Pt-based catalysts for a wide range of energy-related electrochemical reactions. Direct electrochemical deposition is one of the most straightforward and versatile methods to synthesize supported nonprecious metal catalysts. However, further advancement in the design of supported nonprecious metal catalysts requires a detailed mechanistic understanding of the interplay between kinetics and thermodynamics of the deposition phenomena under realistic reaction conditions. Here, we study the electrodeposition of Cu on carbon nanotubes and graphene derivatives under electrochemical conditions using in situ liquid cell transmission electron microscopy (TEM). By combining real-time imaging, electrochemical measurements, X-ray photoelectron spectroscopy (XPS), and finite-element analysis (FEA), we show that low-dimensional support materials, especially carbon nanotubes, are excellent for generating uniform and finely dispersed platinum group metal-(PGM)-free catalysts under mild electrochemical conditions. The electrodeposited Cu on graphene and carbon nanotubes is also observed to show good electrochemical activity toward nitrate reduction reactions (NO3RRs), further supported by density functional theory (DFT) calculations. Nitrogen doping plays an important role in guiding nonprecious metal deposition, but its low electrical conductivity may give rise to lower NO3RR activity compared to its nondoped analogue. The development of supported nonprecious metals through interfacial and surface engineering for the design of supported catalysts will substantially reduce the demand for precious metals and generate robust catalysts with better durability, thereby presenting opportunities for solving the critical problems in energy storage and electrocatalysis.
RESUMO
Conventional methods for detecting unsaturated fatty acids (UFAs) pose challenges for rapid analyses due to the need for complex pretreatment and expensive instruments. Here, we developed an intelligent platform for facile and low-cost analysis of UFAs by combining a smartphone-assisted colorimetric sensor array (CSA) based on MnO2 nanozymes with "image segmentation-feature extraction" deep learning (ISFE-DL). Density functional theory predictions were validated by doping experiments using Ag, Pd, and Pt, which enhanced the catalytic activity of the MnO2 nanozymes. A CSA mimicking mammalian olfactory system was constructed with the principle that UFAs competitively inhibit the oxidization of the enzyme substrate, resulting in color changes in the nanozyme-ABTS substrate system. Through linear discriminant analysis coupled with the smartphone App "Quick Viewer" that utilizes multihole parallel acquisition technology, oleic acid (OA), linoleic acid (LA), α-linolenic acid (ALA), and their mixtures were clearly discriminated; various edible vegetable oils, different camellia oils (CAO), and adulterated CAOs were also successfully distinguished. Furthermore, the ISFE-DL method was combined in multicomponent quantitative analysis. The sensing elements of the CSA (3 × 4) were individually segmented for single-hole feature extraction containing information from 38,868 images of three UFAs, thereby allowing for the extraction of more features and augmenting sample size. After training with the MobileNetV3 small model, the determination coefficients of OA, LA, and ALA were 0.9969, 0.9668, and 0.7393, respectively. The model was embedded in the smartphone App "Intelligent Analysis Master" for one-click quantification. We provide an innovative approach for intelligent and efficient qualitative and quantitative analysis of UFAs and other compounds with similar characteristics.
Assuntos
Colorimetria , Aprendizado Profundo , Ácidos Graxos Insaturados , Compostos de Manganês , Óxidos , Smartphone , Colorimetria/métodos , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/análise , Óxidos/química , Compostos de Manganês/química , Platina/química , Óleos de Plantas/química , Camellia/química , Paládio/química , CatáliseRESUMO
Achieving rapid, cost effective, and intelligent identification and quantification of flavonoids is challenging. For fast and uncomplicated flavonoid determination, a sensing platform of smartphone-coupled colorimetric sensor arrays (electronic noses) was developed, relying on the differential competitive inhibition of hesperidin, nobiletin, and tangeretin on the oxidation reactions of nanozymes with a 3,3',5,5'-tetramethylbenzidine substrate. First, density functional theory calculations predicted the enhanced peroxidase-like activities of CeO2 nanozymes after doping with Mn, Co, and Fe, which was then confirmed by experiments. The self-designed mobile application, Quick Viewer, enabled a rapid evaluation of the red, green, and blue values of colorimetric images using a multi-hole parallel acquisition strategy. The sensor array based on three channels of CeMn, CeFe, and CeCo was able to discriminate between different flavonoids from various categories, concentrations, mixtures, and the various storage durations of flavonoid-rich Citri Reticulatae Pericarpium through a linear discriminant analysis. Furthermore, the integration of a "segmentation-extraction-regression" deep learning algorithm enabled single-hole images to be obtained by segmenting from a 3 × 4 sensing array to augment the featured information of array images. The MobileNetV3-small neural network was trained on 37,488 single-well images and achieved an excellent predictive capability for flavonoid concentrations (R2 = 0.97). Finally, MobileNetV3-small was integrated into a smartphone as an application (Intelligent Analysis Master), to achieve the one-click output of three concentrations. This study developed an innovative approach for the qualitative and simultaneous multi-ingredient quantitative analysis of flavonoids.
Assuntos
Técnicas Biossensoriais , Colorimetria , Aprendizado Profundo , Flavonoides , Smartphone , Colorimetria/instrumentação , Colorimetria/métodos , Flavonoides/análise , Flavonoides/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Citrus/química , Nariz Eletrônico , Cério/química , Limite de Detecção , Benzidinas/químicaRESUMO
Obstructive sleep apnea (OSA) and obesity can increase the risk of hypertension, but the combined effects of these two conditions on hypertension are not yet known. We collected the basic characteristics, sleep parameters, and glucose levels of subjects with a polysomnography test and divided them into four groups, according to whether they had severe OSA and obesity or not. The main effects of severe OSA and obesity and the interactions of the two on systolic blood pressure (SBP) and diastolic blood pressure (DBP) levels were detected using analysis of covariance. The association between obesity and severe OSA and abnormal blood pressure and their combined effects were detected with logistic regression. In total, 686 subjects were included. After adjusting for multiple confounding factors, the strong main effects of obesity and severe OSA were detected in the SBP and DBP levels, with no combined effects from the two conditions on SBP or DBP. Obesity was independently associated with the presence of hyper-systolic blood pressure (hyper-SBP) and hypertension, and severe OSA was independently associated with the presence of hyper diastolic blood pressure (hyper-DBP) and hypertension. No effects of the interaction between severe OSA and obesity on the presence of abnormal blood pressure were observed. Both severe OSA and obesity were associated with hypertension, while obesity was closely associated with hyper-SBP, and severe OSA was associated with hyper-DBP. No effects of the interaction between these two on hypertension were observed.
RESUMO
Background: Collateral status of the circle of Willis was associated with white matter hyperintensities (WMHs) in patients with internal carotid artery (ICA) stenosis, but few have investigated the effect of leptomeningeal anastomoses. Objective: The aim of this study was to observe the association between WMHs and the laterality of the posterior cerebral artery (PCA) that presents leptomeningeal anastomoses in patients with severe ICA stenosis. Materials and Methods: WMHs and ipsilateral PCA laterality were evaluated in patients with unilateral ICA stenosis ≥70% (including occlusion) and contralateral ICA stenosis <50% or no stenosis. Ipsilateral PCA laterality was compared between two groups of no/mild and severe score of global, deep and periventricular WMHs, respectively. Results: We included 115 patients with unilateral ICA stenosis ≥70%. There were 60 patients with no/mild and 55 with severe global WMHs. The patients with severe global WMHs were older (OR = 1.849, 95% CI: 1.058-3.229, P = 0.031) and had higher incidence of negative PCA laterality (OR = 3.301, 95% CI: 1.140-9.558, P = 0.028). The patients with severe deep WMHs were also older (OR = 2.031, 95% CI: 1.130-3.651, P = 0.018) and had higher incidence of negative PCA laterality (OR = 4.250, 95% CI: 1.501-12.032, P = 0.006). There was no significant difference between the patients with no/mild and severe periventricular WMHs in the incidence of negative PCA laterality. Conclusions: The incidence of negative PCA laterality was higher in patients with severe global and deep WMHs, but not higher in patients with severe periventricular WMHs. The leptomeningeal anastomoses may affect the deep WMHs in patients with severe ICA stenosis.
Assuntos
Estenose das Carótidas , Leucoaraiose , Leucoencefalopatias , Substância Branca , Humanos , Estenose das Carótidas/diagnóstico por imagem , Artéria Cerebral Posterior , Substância Branca/diagnóstico por imagem , Lateralidade Funcional , Artéria Carótida Interna/diagnóstico por imagem , Circulação CerebrovascularRESUMO
Electrochemical reduction of carbon dioxide (CO2 ) to ethanol is a promising strategy for global warming mitigation and resource utilization. However, due to the intricacy of CâC coupling and multiple proton-electron transfers, CO2 -to-ethanol conversion remains a great challenge with low activity and selectivity. Herein, it is reported a P-doped graphene aerogel as a self-supporting electrocatalyst for CO2 reduction to ethanol. High ethanol Faradaic efficiency (FE) of 48.7% and long stability of 70 h are achieved at -0.8 VRHE . Meanwhile, an outstanding ethanol yield of 14.62 µmol h-1 cm-2 can be obtained, outperforming most reported electrocatalysts. In situ Raman spectra indicate the important role of adsorbed *CO intermediates in CO2 -to-ethanol conversion. Furthermore, the possible active sites and optimal pathway for ethanol formation are revealed by density functional theory calculations. The graphene zigzag edges with P doping enhance the adsorption of *CO intermediate and increase the coverage of *CO on the catalyst surface, which facilitates the *CO dimerization and boosts the EtOH formation. In addition, the hierarchical pore structure of P-doped graphene aerogels exposes abundant active sites and facilitates mass/charge transfer. This work provides inventive insight into designing metal-free catalysts for liquid products from CO2 electroreduction.