Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Cell Res ; 430(1): 113685, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37330182

RESUMO

Acute lung injury (ALI), a common clinical type of critical illness, is an acute hypoxic respiratory insufficiency caused by the damage of alveolar epithelial cells and capillary endothelial cells. In a previous study, we reported a novel lncRNA, lncRNA PFI, which could protect against pulmonary fibrosis in pulmonary fibroblasts. The present study demonstrated that lncRNA PFI was downregulated in alveolar epithelial cell of mice injury lung tissues, and further investigated the role of lncRNA PFI in regulating inflammation-induced alveolar epithelial cell apoptosis. Overexpression of lncRNA PFI could partially abrogated bleomycin induced type II AECs injured. Subsequently, bioinformatic prediction revealed that lncRNA PFI might directly bind to miR-328-3p, and further AGO-2 RNA binding protein immunoprecipitation (RIP) assay confirmed their binding relationship. Furthermore, miR-328-3p promoted apoptosis in MLE-12 cells by limiting the activation of the Creb1, a protein correlated with cell apoptosis, whereas AMO-328-3p ablated the pro-apoptosis effect of silencing lncRNA PFI in MLE-12 cells. While miR-328-3p could also ablate the function of lncRNA PFI in bleomycin treated human lung epithelial cells. Enhanced expression of lncRNA PFI reversed the LPS-induced lung injury in mice. Overall, these data reveal that lncRNA PFI mitigated acute lung injury through miR-328-3p/Creb1 pathway in alveolar epithelial cells.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , RNA Longo não Codificante , Síndrome do Desconforto Respiratório , Humanos , Camundongos , Animais , Células Epiteliais Alveolares/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células Endoteliais/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Apoptose/genética , Síndrome do Desconforto Respiratório/metabolismo , Lipopolissacarídeos/efeitos adversos , Bleomicina/farmacologia
2.
Acta Pharmacol Sin ; 45(7): 1425-1437, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38839936

RESUMO

Cardiac fibrosis is a pathological scarring process that impairs cardiac function. N-acetyltransferase 10 (Nat10) is recently identified as the key enzyme for the N4-acetylcytidine (ac4C) modification of mRNAs. In this study, we investigated the role of Nat10 in cardiac fibrosis following myocardial infarction (MI) and the related mechanisms. MI was induced in mice by ligation of the left anterior descending coronary artery; cardiac function was assessed with echocardiography. We showed that both the mRNA and protein expression levels of Nat10 were significantly increased in the infarct zone and border zone 4 weeks post-MI, and the expression of Nat10 in cardiac fibroblasts was significantly higher compared with that in cardiomyocytes after MI. Fibroblast-specific overexpression of Nat10 promoted collagen deposition and induced cardiac systolic dysfunction post-MI in mice. Conversely, fibroblast-specific knockout of Nat10 markedly relieved cardiac function impairment and extracellular matrix remodeling following MI. We then conducted ac4C-RNA binding protein immunoprecipitation-sequencing (RIP-seq) in cardiac fibroblasts transfected with Nat10 siRNA, and revealed that angiomotin-like 1 (Amotl1), an upstream regulator of the Hippo signaling pathway, was the target gene of Nat10. We demonstrated that Nat10-mediated ac4C modification of Amotl1 increased its mRNA stability and translation in neonatal cardiac fibroblasts, thereby increasing the interaction of Amotl1 with yes-associated protein 1 (Yap) and facilitating Yap translocation into the nucleus. Intriguingly, silencing of Amotl1 or Yap, as well as treatment with verteporfin, a selective and potent Yap inhibitor, attenuated the Nat10 overexpression-induced proliferation of cardiac fibroblasts and prevented their differentiation into myofibroblasts in vitro. In conclusion, this study highlights Nat10 as a crucial regulator of myocardial fibrosis following MI injury through ac4C modification of upstream activators within the Hippo/Yap signaling pathway.


Assuntos
Fibrose , Camundongos Endogâmicos C57BL , Infarto do Miocárdio , Animais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Camundongos , Masculino , Proteínas de Sinalização YAP/metabolismo , Fibroblastos/metabolismo , Citidina/análogos & derivados , Citidina/farmacologia , Camundongos Knockout , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Acetiltransferase N-Terminal E/metabolismo , Via de Sinalização Hippo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Células Cultivadas , Transdução de Sinais , Acetiltransferases N-Terminal/metabolismo , Miocárdio/patologia , Miocárdio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
3.
Molecules ; 28(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38067543

RESUMO

Diabetic cardiomyopathy (DCM) is a pathophysiological condition triggered by diabetes mellitus (DM), which can lead to heart failure (HF). One of the most important cellular processes associated with DCM is the death of cardiomyocytes. Gasdermin D (GSDMD) plays a key role in mediating pyroptosis, a type of programmed cell death closely associated with inflammasome activation. Recent studies have revealed that pyroptosis is induced during hyperglycemia, which is crucial to the development of DCM. Although the effects of pyroptosis on DCM have been discussed, the relationship between DCM and GSDMD is not fully clarified. Recent studies gave us the impetus for clarifying the meaning of GSDMD in DCM. The purpose of this review is to summarize new and emerging insights, mainly discussing the structures of GSDMD and the mechanism of pore formation, activation pathways, molecular mechanisms of GSDMD-mediated pyroptosis, and the therapeutic potential of GSDMD in DCM. The implications of this review will pave the way for a new therapeutic target in DCM.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Humanos , Piroptose , Cardiomiopatias Diabéticas/tratamento farmacológico , Gasderminas , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Inflamassomos/metabolismo
4.
Br J Cancer ; 127(5): 916-926, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35618786

RESUMO

BACKGROUND: Mutations in BRCA1 or BRCA2 (BRCA1/2) cause homologous recombination deficiency (HRD). Ovarian cancer (OvCa) patients harbouring HRD beyond BRCA1/2 mutation result in a state referred to as "BRCAness". OvCa with BRCAness could benefit from PARP inhibitors. This study aims to identify a signature to detect the BRCAness population at the transcriptome level. METHODS: We used a rank-based algorithm to develop a qualitative BRCAness signature for OvCa. Upregulation of CXCL1 with downregulation of SV2A and upregulation of LY9 with downregulation of CHRNB3 were constructed as the BRCAness signature (2 gene pairs, 2-GPS) for OvCa. RESULTS: OvCa samples that were classified as BRCAness by 2-GPS showed improved overall survival, progression-free survival and exhibited increased multi-omics alterations in homologous recombination genes and enhanced sensitivity to immune checkpoint blockade. BRCAness cells were sensitive to PARP inhibitors. By biological experiments, we validated SKOV3 cells and patients with HRD exhibited higher expression of CXCL1 than SV2A and higher expression of LY9 than CHRNB3 at mRNA level. Both SKOV3 and A2780 with HRD were sensitive to mitomycin C, cisplatin and olaparib. CONCLUSIONS: In conclusion, 2-GPS could robustly predict BRCAness OvCa at the individual level and extend the population who may benefit from PARP inhibitors.


Assuntos
Quimiocina CXCL1 , Neoplasias Ovarianas , Família de Moléculas de Sinalização da Ativação Linfocitária , Proteína BRCA1/genética , Proteína BRCA2/genética , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/genética , Linhagem Celular Tumoral , Quimiocina CXCL1/genética , Feminino , Recombinação Homóloga , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Regulação para Cima
5.
BMC Med ; 20(1): 470, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482371

RESUMO

BACKGROUND: The recruitment of a sufficient number of immune cells to induce an inflamed tumor microenvironment (TME) is a prerequisite for effective response to cancer immunotherapy. The immunological phenotypes in the TME of EGFR-mutated lung cancer were characterized as non-inflamed, for which immunotherapy is largely ineffective. METHODS: Global proteomic and phosphoproteomic data from lung cancer tissues were analyzed aiming to map proteins related to non-inflamed TME. The ex vivo and in vivo studies were carried out to evaluate the anti-tumor effect. Proteomics was applied to identify the potential target and signaling pathways. CRISPR-Cas9 was used to knock out target genes. The changes of immune cells were monitored by flow cytometry. The correlation between PKCδ and PD-L1 was verified by clinical samples. RESULTS: We proposed that PKCδ, a gatekeeper of immune homeostasis with kinase activity, is responsible for the un-inflamed phenotype in EGFR-mutated lung tumors. It promotes tumor progression by stimulating extracellular matrix (ECM) and PD-L1 expression which leads to immune exclusion and assists cancer cell escape from T cell surveillance. Ablation of PKCδ enhances the intratumoral penetration of T cells and suppresses the growth of tumors. Furthermore, blocking PKCδ significantly sensitizes the tumor to immune checkpoint blockade (ICB) therapy (αPD-1) in vitro and in vivo model. CONCLUSIONS: These findings revealed that PKCδ is a critical switch to induce inflamed tumors and consequently enhances the efficacy of ICB therapy in EGFR-mutated lung cancer. This opens a new avenue for applying immunotherapy against recalcitrant tumors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteína Quinase C-delta , Humanos , Antígeno B7-H1/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Proteômica , Microambiente Tumoral , Proteína Quinase C-delta/genética
6.
Pharmacol Res ; 182: 106282, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35662630

RESUMO

Bacteria-based immunotherapy has become a promising strategy to induce innate and adaptive responses for fighting cancer. The advantages of bacteriolytic tumor therapy mainly lie in stimulation of innate immunity and colonization of some bacteria targeting the tumor microenvironment (TME). These bacteria have cytotoxic proteins and immune modulating factors that can effectively restrain tumor growth. However, cancer is a multifactorial disease and single therapy is typically unable to eradicate tumors. Rapid progress has been made in combining bacteria with nanotechnology. Using the nanomolecular properties of bacterial products for tumor treatment preserves many features from the original bacteria while providing some unique advantages. Nano-bacterial therapy can enhance permeability and retention of drugs, increase the tolerability of the targeted drugs, promote the release of immune cell mediators, and induce immunogenic cell death pathways. In addition, combining nano-bacterial mediated antitumor therapeutic systems with modern therapy is an effective strategy for overcoming existing barriers in antitumor treatment and can achieve satisfactory therapeutic efficacy. Overall, exploring the immune antitumor characteristics of adjuvant clinical treatment with bacteria can provide potential efficacious treatment strategies for combatting cancer.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Antineoplásicos/farmacologia , Bactérias/metabolismo , Humanos , Fatores Imunológicos/uso terapêutico , Imunoterapia , Nanopartículas/uso terapêutico , Neoplasias/patologia , Microambiente Tumoral
7.
Pharmacol Res ; 177: 106124, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35149188

RESUMO

Cardiac fibrosis is a pathological process of multiple cardiovascular diseases, which may lead to heart failure. Studies have shown that microRNAs (miRNAs) play critical roles in regulating mitophagy and cardiac fibrosis. We found that miR-24-3p expression was significantly downregulated in transverse aortic constriction (TAC) mice and cardiac fibroblasts (CFs) treated with Ang Ⅱ. We also found that, apart from improving cardiac structure and function, forced expression of miR-24-3p not only reduced the levels of collagen and α-SMA but also inhibited proliferation and migration of CFs. Next, our research proved that miR-24-3p suppressed the progression of mitophagy, autophagic flux, and the levels of mitophagy-related proteins in cardiac fibrosis models. Further analysis showed that PHB2 was a direct target of miR-24-3p. Finally, experiments showed that the knockdown of PHB2 reversed Ang Ⅱ-induced fibrosis in CFs. The results of our study suggests that increased expression of miR-24-3p contributes to the reduction of cardiac fibrosis and that it might be targeted therapeutically to alleviate cardiac fibrosis.


Assuntos
MicroRNAs , Proibitinas/metabolismo , Animais , Células Cultivadas , Fibroblastos/metabolismo , Fibrose , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Mitofagia , Miocárdio/metabolismo
8.
Acta Pharmacol Sin ; 43(11): 2862-2872, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35396533

RESUMO

Aberrant activation of cardiac fibroblasts is the main cause and character of cardiac fibrosis, and inhibition of cardiac fibrosis becomes a promising treatment for cardiac diseases. Platelet-activating factor (PAF) and Hippo pathway is recently recognized as key signaling mechanisms in cardiovascular diseases. In this study we explored the potential roles of PAF and Hippo signaling pathway in cardiac fibrosis. Myocardial infarction (MI) was induced in mice by left anterior descending artery ligation. After 28 days, the mice were sacrificed, and the hearts were collected for analyses. We showed that PAF receptor (PAFR) and yes-associated protein 1 (YAP1, a key effector in the Hippo pathway) were significantly increased in the heart of MI mice. Increased expression of PAFR and YAP1 was also observed in angiotensin II (Ang II)-treated mouse cardiac fibroblasts. In mouse cardiac fibroblasts, forced expression of YAP1 increased cell viability, resulted in collagen deposition and promoted fibroblast-myofibroblast transition. We showed that PAF induced fibrogenesis through activation of YAP1 and promoted its nuclear translocation via interacting with PAFR, while YAP1 promoted the expression of PAFR by binding to and activating transcription factor TEAD1. More importantly, silencing PAFR or YAP1 by shRNA, or using transgenic mice to induce the conditional deletion of YAP1 in cardiac fibroblasts, impeded cardiac fibrosis and improved cardiac function in MI mice. Taken together, this study elucidates the role and mechanisms of PAFR/YAP1 positive feedback loop in cardiac fibrosis, suggesting a potential role of this pathway as novel therapeutic targets in cardiac fibrosis.


Assuntos
Infarto do Miocárdio , Fator de Ativação de Plaquetas , Camundongos , Animais , Retroalimentação , Transdução de Sinais/fisiologia , Fibroblastos/metabolismo , Infarto do Miocárdio/metabolismo , Camundongos Transgênicos , Fibrose
9.
J Cell Physiol ; 236(2): 1094-1104, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32657438

RESUMO

Sox4 participates in the progression of embryo development and regulation of apoptosis in tumors. However, the effect and mechanism of Sox4 in myocardial infarction (MI) remains unclear. Therefore, we aimed at examining the role and molecular mechanism of Sox4 in the process of cardiomyocytes apoptosis during MI. The expression of Sox4 were obviously increased both in MI mice and in neonatal mouse cardiomyocytes treated with H2 O2 . Overexpression of Sox4 promoted cardiomyocyte apoptosis with or without H2 O2 , whereas knocking down of Sox4 alleviated H2 O2 -induced apoptosis in cardiomyocytes. Furthermore, silencing Sox4 by AAV-9 carried short hairpin RNA targeting Sox4 (AAV-9-sh-Sox4) markedly decreased cardiac infarct area, imprfoved cardiac dysfunction, and reversed apoptosis in MI mice. Mechanistically, there is a potential Sox4-binding site in the promoter region of Bim, and forced expression of Sox4 significantly promoted Bim expression in cultured cardiomyocytes with or without H2 O2 , whereas knocking down of Sox4 inhibited the expression of Bim. Further studies showed that silencing Bim attenuated Sox4-induced apoptosis in cardiomyocytes, indicating that Sox4 promoted cardiomyocytes apoptosis through regulation of Bim expression, which can be used as a potential therapeutic target for MI.


Assuntos
Proteína 11 Semelhante a Bcl-2/genética , Infarto do Miocárdio/genética , Isquemia Miocárdica/genética , Fatores de Transcrição SOXC/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Regulação da Expressão Gênica/genética , Humanos , Peróxido de Hidrogênio/farmacologia , Camundongos , Infarto do Miocárdio/patologia , Isquemia Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Regiões Promotoras Genéticas/genética
10.
Acta Pharmacol Sin ; 42(5): 691-700, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32759964

RESUMO

Myocardial infarction (MI) leads to the loss of cardiomyocytes, left ventricle dilation and cardiac dysfunction, eventually developing into heart failure. Mzb1 (Marginal zone B and B1 cell specific protein 1) is a B-cell-specific and endoplasmic reticulum-localized protein. Mzb1 is an inflammation-associated factor that participates a series of inflammatory processes, including chronic periodontitis and several cancers. In this study we investigated the role of Mzb1 in experimental models of MI. MI was induced in mice by ligation of the left descending anterior coronary artery, and in neonatal mouse ventricular cardiomyocytes (NMVCs) by H2O2 treatment in vitro. We showed that Mzb1 expression was markedly reduced in the border zone of the infarct myocardium of MI mice and in H2O2-treated NMVCs. In H2O2-treated cardiomyocytes, knockdown of Mzb1 decreased mitochondrial membrane potential, impaired mitochondrial function and promoted apoptosis. On contrary, overexpression of Mzb1 improved mitochondrial membrane potential, ATP levels and mitochondrial oxygen consumption rate (OCR), and inhibited apoptosis. Direct injection of lentiviral vector carrying Len-Mzb1 into the myocardial tissue significantly improved cardiac function and alleviated apoptosis in MI mice. We showed that Mzb1 overexpression significantly decreased the levels of Bax/Bcl-2 and cytochrome c and improved mitochondrial function in MI mice via activating the AMPK-PGC1α pathway. In addition, we demonstrated that Mzb1 recruited the macrophages and alleviated inflammation in MI mice. We conclude that Mzb1 is a crucial regulator of cardiomyocytes after MI by improving mitochondrial function and reducing inflammatory signaling pathways, implying a promising therapeutic target in ischemic cardiomyopathy.


Assuntos
Inflamação/metabolismo , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Infarto do Miocárdio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Regulação para Baixo , Coração/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
J Cell Physiol ; 235(3): 2753-2760, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31541452

RESUMO

Cardiomyocytes differentiated from human-induced pluripotent stem cells (hiPSCs) hold great potential for therapy of heart diseases. However, the underlying mechanisms of its cardiac differentiation have not been fully elucidated. Hippo-YAP signal pathway plays important roles in cell differentiation, tissue homeostasis, and organ size. Here, we identify the role of Hippo-YAP signal pathway in determining cardiac differentiation fate of hiPSCs. We found that cardiac differentiation of hiPSCs were significantly inhibited after treatment with verteporfin (a selective and potent YAP inhibitor). During hiPSCs differentiation from mesoderm cells (MESs) into cardiomyocytes, verteporfin treatment caused the cells retained in the earlier cardiovascular progenitor cells (CVPCs) stage. Interestingly, during hiPSCs differentiation from CVPC into cardiomyocytes, verteporfin treatment induced cells dedifferentiation into the earlier CVPC stage. Mechanistically, we found that YAP interacted with transcriptional enhanced associate domain transcription factor 3 (TEAD3) to regulate cardiac differentiation of hiPSCs during the CVPC stage. Consistently, RNAi-based silencing of TEAD3 mimicked the phenotype as the cells treated with verteporfin. Collectively, our study suggests that YAP-TEAD3 signaling is important for cardiomyocyte differentiation of hiPSCs. Our findings provide new insight into the function of Hippo-YAP signal in cardiovascular lineage commitment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Desenvolvimento Muscular/genética , Miócitos Cardíacos/citologia , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Desdiferenciação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem da Célula/genética , Células Cultivadas , Proteínas de Ligação a DNA/genética , Humanos , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Verteporfina/farmacologia , Proteínas de Sinalização YAP
12.
Brief Bioinform ; 19(4): 644-655, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28096076

RESUMO

Synthetic viability, which is defined as the combination of gene alterations that can rescue the lethal effects of a single gene alteration, may represent a mechanism by which cancer cells resist targeted drugs. Approaches to detect synthetic viable (SV) interactions in cancer genome to investigate drug resistance are still scarce. Here, we present a computational method to detect synthetic viability-induced drug resistance (SVDR) by integrating the multidimensional data sets, including copy number alteration, whole-exome mutation, expression profile and clinical data. SVDR comprehensively characterized the landscape of SV interactions across 8580 tumors in 32 cancer types by integrating The Cancer Genome Atlas data, small hairpin RNA-based functional experimental data and yeast genetic interaction data. We revealed that the SV interactions are favorable to cells and can predict clinical prognosis for cancer patients, which were robustly observed in an independent data set. By integrating the cancer pharmacogenomics data sets from Cancer Cell Line Encyclopedia (CCLE) and Broad Cancer Therapeutics Response Portal, we have demonstrated that SVDR enables drug resistance prediction and exhibits high reliability between two databases. To our knowledge, SVDR is the first genome-scale data-driven approach for the identification of SV interactions related to drug resistance in cancer cells. This data-driven approach lays the foundation for identifying the genomic markers to predict drug resistance and successfully infers the potential drug combination for anti-cancer therapy.


Assuntos
Biologia Computacional/métodos , Resistencia a Medicamentos Antineoplásicos/genética , Genes Letais , Mutação , Proteínas de Neoplasias/genética , Neoplasias/genética , Farmacogenética , Perfilação da Expressão Gênica , Humanos , Neoplasias/metabolismo
13.
J Cell Mol Med ; 23(11): 7685-7698, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31465630

RESUMO

Pathological cardiac hypertrophy (CH) is a key factor leading to heart failure and ultimately sudden death. Long non-coding RNAs (lncRNAs) are emerging as a new player in gene regulation relevant to a wide spectrum of human disease including cardiac disorders. Here, we characterize the role of a specific lncRNA named cardiac hypertrophy-associated regulator (CHAR) in CH and delineate the underlying signalling pathway. CHAR was found markedly down-regulated in both in vivo mouse model of cardiac hypertrophy induced by pressure overload and in vitro cellular model of cardiomyocyte hypertrophy induced by angiotensin II (AngII) insult. CHAR down-regulation alone was sufficient to induce hypertrophic phenotypes in healthy mice and neonatal rat ventricular cells (NRVCs). Overexpression of CHAR reduced the hypertrophic responses. CHAR was found to act as a competitive endogenous RNA (ceRNA) to down-regulate miR-20b that we established as a pro-hypertrophic miRNA. We experimentally established phosphatase and tensin homolog (PTEN), an anti-hypertrophic signalling molecule, as a target gene for miR-20b. We found that miR-20b induced CH by directly repressing PTEN expression and indirectly increasing AKT activity. Moreover, CHAR overexpression mitigated the repression of PTEN and activation of AKT by miR-20b, and as such, it abrogated the deleterious effects of miR-20b on CH. Collectively, this study characterized a new lncRNA CHAR and unravelled a new pro-hypertrophic signalling pathway: lncRNA-CHAR/miR-20b/PTEN/AKT. The findings therefore should improve our understanding of the cellular functionality and pathophysiological role of lncRNAs in the heart.


Assuntos
Cardiomegalia/genética , MicroRNAs/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Animais , Animais Recém-Nascidos , Aorta/patologia , Constrição Patológica , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Ratos
14.
FASEB J ; 32(10): 5285-5297, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29683732

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic parenchymal lung disease of unknown etiology and lacks an effective intervention. Long noncoding RNAs (lncRNAs) participate in organ fibrosis and various pulmonary diseases, but the role of lncRNAs in lung fibrosis is not fully understood. In the present study, we identified that lncRNA NONMMUT021928, designated as pulmonary fibrosis-associated lncRNA (PFAL), was up-regulated in the lungs of mice with experimental lung fibrosis, and in TGF-ß1-induced fibrotic lung fibroblasts. Further study showed that overexpression of PFAL promoted cell proliferation, migration, and fibroblast-myofibroblast transition. Overexpression further resulted in extracellular matrix deposition and fibrogenesis in lung fibroblasts through regulation of microRNA-18a (miR-18a). Importantly, knockdown of PFAL alleviated lung fibrosis both in vitro and in vivo. Mechanistically, our study showed that PFAL promoted lung-fibroblast activation and fibrogenesis by acting as a competing endogenous RNA for miR-18a: forced expression of PFAL inhibited the expression and activity of miR-18a, whereas silencing of PFAL had the opposite effect. Furthermore, we found that miR-18a was decreased during lung fibrosis in vitro and in vivo, as well as in patients with IPF. Moreover, knockdown of miR-18a led to fibrogenesis in lung fibroblasts, whereas enhanced expression of miR-18a attenuated TGF-ß1-induced lung fibrosis by directly targeting the regulation of connecting tissue growth factor. Taken together, these results revealed the effect and mechanism of lncRNA PFAL in pulmonary fibrosis and suggested that PFAL depletion may provide a novel strategy for the treatment of lung fibrosis.-Li, X., Yu, T., Shan, H., Jiang, H., Sun, J., Zhao, X., Su, W., Yang, L., Shan, H., Liang, H. lncRNA PFAL promotes lung fibrosis through CTGF by competitively binding miR-18a.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fibroblastos/metabolismo , MicroRNAs/metabolismo , Fibrose Pulmonar/metabolismo , RNA Longo não Codificante/biossíntese , Animais , Fator de Crescimento do Tecido Conjuntivo/genética , Fibroblastos/patologia , Técnicas de Silenciamento de Genes , Masculino , Camundongos , MicroRNAs/genética , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , RNA Longo não Codificante/genética , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
15.
Mol Ther ; 26(9): 2206-2217, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30025992

RESUMO

Long non-coding RNAs (lncRNAs) have been reported to be involved in various pathophysiological processes in many diseases. However, the role and mechanism of lncRNAs in idiopathic pulmonary fibrosis (IPF) have not been explicitly delineated. In the present study, we reported that lncRNA NONMMUT065582, designated pulmonary fibrosis-associated RNA (PFAR), is upregulated in the lungs of mice with lung fibrosis as well as in fibrotic lung fibroblasts. Overexpression of PFAR promoted fibrogenesis through modulation of miR-138, whereas knockdown of PFAR attenuated TGF-ß1-induced fibrogenesis in lung fibroblasts. In addition, knockdown of miR-138 promoted fibrogenesis by targeting regulation of yes-associated protein 1 (YAP1), whereas enhanced expression of miR-138 attenuated fibrogenesis in lung fibroblasts. Mechanistically, PFAR acted as competing endogenous RNA (ceRNA) of miR-138: forced expression of PFAR reduced the expression and activity of miR-138 to activate YAP1 and promote fibrogenesis in lung fibroblasts, whereas loss of YAP1 abrogated the pro-fibrotic effect of PFAR. More importantly, PFAR silencing alleviated BLM-induced lung fibrosis in mice. Taken together, the results of our study identified lncRNA PFAR as a new pro-fibrotic molecule that acts as a ceRNA of miR-138 during lung fibrosis and demonstrated PFAR as a novel therapeutic target for the prevention and treatment of lung fibrosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fibroblastos/metabolismo , Fibrose/metabolismo , MicroRNAs/metabolismo , Fosfoproteínas/metabolismo , RNA Longo não Codificante/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células Cultivadas , Feminino , Fibrose/genética , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Fosfoproteínas/genética , RNA Longo não Codificante/genética , Fatores de Transcrição , Proteína 1 Relacionada a Twist/genética , Proteínas de Sinalização YAP
16.
Am J Physiol Lung Cell Mol Physiol ; 315(4): L563-L575, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29952219

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disease with increasing mortality and poor prognosis. The current understanding of the role of long noncoding RNAs (lncRNAs) in IPF remains limited. In the present study, we identified a lncRNA NONMMUT022554, designated pulmonary fibrosis-regulatory lncRNA (PFRL), with unknown functions and found that its levels were increased in fibrotic lung tissues of mice and pulmonary fibroblasts exposed to transforming growth factor (TGF)-ß1. Furthermore, we found that enforced expression of PFRL induced fibroblast activation and collagen deposition, which could be mitigated by the overexpression of microRNA (miR)-26a. By contrast, the inhibition of PFRL could markedly alleviate the TGF-ß1-induced upregulation of fibrotic markers and attenuate fibroblast proliferation and differentiation by regulating miR-26a. Meanwhile, our study confirmed that PFRL inhibited the expression and activity of miR-26a, which has been identified as an antifibrotic miRNA in our previous study. Interestingly, our molecular study further confirmed that Smad2 transcriptionally inhibits the expression of miR-26a and that the miR-26a/Smad2 feedback loop mediates the profibrotic effects of PFRL in lung fibrosis. More importantly, knockdown of PFRL ablated bleomycin-induced pulmonary fibrosis in vivo. Taken together, our findings indicate that lncRNA PFRL contributes to the progression of lung fibrosis by modulating the reciprocal repression between miR-26a and Smad2 and that this lncRNA may be a therapeutic target for IPF.


Assuntos
Fibroblastos/patologia , Pulmão/patologia , MicroRNAs/genética , Fibrose Pulmonar/patologia , RNA Longo não Codificante/genética , Proteína Smad2/metabolismo , Animais , Animais Recém-Nascidos , Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Proliferação de Células , Células Cultivadas , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Transdução de Sinais , Proteína Smad2/genética , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
18.
Mol Cancer ; 17(1): 119, 2018 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-30098599

RESUMO

BACKGROUND: Ovarian cancer (OvCa) is one of the most common malignant diseases of the female reproductive system in the world. The majority of OvCa is diagnosed with metastasis in the abdominal cavity. Epithelial-to-mesenchymal transition (EMT) plays a key role in tumor cell metastasis. However, it is still unclear whether long non-coding RNA (lncRNA) is implicated in EMT and influences cell invasion and metastasis in OvCa. RESULTS: In this study, using bioinformatcis analysis, we constructed a lncRNA-mediated competing endogenous RNA (ceRNA) network for mesenchymal OvCa and identified lncRNA AP000695.4, which we named pro-transition associated RNA (PTAR). PTAR was significantly up-regulated in the mesenchymal subtype samples compared with the epithelial subtype samples from the TCGA OvCa data sets. In addition, our study showed that PTAR expression was positively correlated with the expression level of ZEB1 in the mesenchymal OvCa samples. Meanwhile, we found that silencing miR-101 promoted cell migration, whereas the overexpression of miR-101 suppressed EMT and cell migration in OvCa cell lines through the regulation of ZEB1. Further analysis showed that enhanced expression of PTAR promoted EMT and metastasis through the regulation of miR-101, whereas silencing PTAR led to the attenuation of TGF-ß1-induced tumorigenicity in ovarian cancer cells. Mechanistically, we found that PTAR acted as a ceRNA of miR-101, as forced expression of PTAR reduced the expression and activity of miR-101. More importantly, the knockdown of PTAR reduced tumorigenicity and metastasis in vivo. CONCLUSIONS: Taken together, the results from our study highlight a role for the PTAR-miR-101-ZEB1 axis in OvCa, which offers novel strategies for the prevention of metastasis in OvCa.


Assuntos
Cistadenocarcinoma Seroso/patologia , MicroRNAs/genética , Neoplasias Ovarianas/patologia , RNA Longo não Codificante/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Animais , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Transplante de Neoplasias , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Regulação para Cima , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
19.
Mol Cancer ; 17(1): 96, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29929545

RESUMO

BACKGROUND: A deeper mechanistic understanding of epithelial-to-mesenchymal transition (EMT) regulation is needed to improve current anti-metastasis strategies in ovarian cancer (OvCa). This study was designed to investigate the role of lncRNAs in EMT regulation during process of invasion-metastasis in serous OvCa to improve current anti-metastasis strategies for OvCa. METHODS: We systematically analyzes high-throughput gene expression profiles of both lncRNAs and protein-coding genes in OvCa samples with integrated epithelial (iE) subtype and integrated mesenchymal (iM) subtype labels. Mouse models, cytobiology, molecular biology assays and clinical samples were performed to elucidate the function and underlying mechanisms of lncRNA PTAF-mediated promotion of EMT and invasion-metastasis in serous OvCa. RESULTS: We constructed a lncRNA-mediated competing endogenous RNA (ceRNA) regulatory network that affects the expression of many EMT-related protein-coding genes in mesenchymal OvCa. Using a combination of in vitro and in vivo studies, we provided evidence that the lncRNA PTAF-miR-25-SNAI2 axis controlled EMT in OvCa. Our results revealed that up-regulated PTAF induced elevated SNAI2 expression by competitively binding to miR-25, which in turn promoted OvCa cell EMT and invasion. Moreover, we found that silencing of PTAF inhibited tumor progression and metastasis in an orthotopic mouse model of OvCa. We then observed a significant correlation between PTAF expression and EMT markers in OvCa patients. CONCLUSIONS: The lncRNA PTAF, a mediator of TGF-ß signaling, can predispose OvCa patients to metastases and may serve as a potential target for anti-metastatic therapies for mesenchymal OvCa patients.


Assuntos
Cistadenocarcinoma Seroso/patologia , Perfilação da Expressão Gênica/métodos , MicroRNAs/genética , Neoplasias Ovarianas/patologia , RNA Longo não Codificante/genética , Fatores de Transcrição da Família Snail/genética , Animais , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/genética , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Transplante de Neoplasias , Neoplasias Ovarianas/genética , Regulação para Cima
20.
Cell Physiol Biochem ; 46(4): 1555-1565, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29689549

RESUMO

BACKGROUND/AIMS: In our previous study, we demonstrated that elevated expression of miR-328 is a potent determinant of cardiac fibrosis during myocardial infarction (MI). In the present study, histological examination revealed progressive fibrosis in transgenic mice overexpressing cardiomyocyte-specific miR-328. This study investigated whether the transfer of miR-328 from cardiomyocytes (CMs) to cardiac fibroblasts (CFs) in a paracrine manner contributes to myocardial fibrosis. METHODS: Myocardial infarction was established by the occlusion of the left coronary artery. Masson's trichrome staining and collagen assays were used to evaluate the progression of fibrosis. The vesicles and translocation of miR-328 in a co-culture assay system were respectively observed using transmission electron microscopy (TEM) and immunofluorescence staining (IF). Real-time PCR was employed to detect the level of miR-328, Col1α1 and Col3α1. The protein expression of Col1α1, TGF-ßRIII, p-smad2/3 (phosphorylated-smad2/3) and TGF-ß1 were probed using western blot analysis. RESULTS: Cardiomyocyte-specific miR-328 overexpressing transgenic (TG) mice showed enhanced collagen deposition and provoked cardiac fibrosis by the activation of the TGF-ß1 pathway, and this effect was abrogated after knockdown of endogenous miR-328 in mice. Correspondingly, the expression of miR-328 was increased in CFs co-cultured with CMs transfected with miR-328 mimics, likely in a paracrine manner. The cardiomyocyte-mediated augmentation of miR-328 contributes to fibrogenesis in CFs, and this pro-fibrotic effect was reversed after the transfection of miR-328 inhibitor in CFs. CONCLUSION: A novel molecular mechanism for miR-328 derived from CMs as a paracrine signaling mediator of cardiac fibrogenesis further demonstrates that miR-328 is a potential therapeutic target.


Assuntos
MicroRNAs/metabolismo , Infarto do Miocárdio/patologia , Actinas/metabolismo , Animais , Antagomirs/metabolismo , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibrose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Microscopia Eletrônica de Transmissão , Infarto do Miocárdio/genética , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ratos , Ratos Wistar , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA