Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(29): e2310247, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38368267

RESUMO

Chemodynamic therapy (CDT) has emerged as a promising approach for treating infected diabetic wounds, while reliable imaging technology for simultaneous monitoring of ROS and therapeutic processes is still a formidable challenge. Herein, smart covalent organic framework (COF) nanoreactors (COF NRs) are constructed by hyaluronic acid (HA) packaged glucose oxidase (GOx) covalently linked Fe-COF for diabetic wound healing. Upon the breakdown of the HA protective layer, GOx consumes glucose to produce gluconic acid and hydrogen peroxide (H2O2), resulting in decreased local pH and H2O2 supplementation. Density functional theory (DFT) calculations show that Fe-COF has high catalytic activity towards H2O2, leading to in situ generation of hydroxyl radicals (·OH) for sterilization, and the localized downregulation of glucose effectively improved the microenvironment of diabetic wounds. Meanwhile, based on the near-infrared photothermal imaging of oxidized 3,3',5,5'-tetramethylbenzidine (oxTMB), the authors showed that TMB can be applied for the point-of-care testing of ·OH and glucose, and assessing the sterilization progress in vivo. More significantly, the facile photothermal signaling strategy can be extended to monitor various ROS-mediated therapeutic systems, enabling accurate prediction of treatment outcomes.


Assuntos
Espécies Reativas de Oxigênio , Cicatrização , Cicatrização/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Glucose Oxidase/metabolismo , Glucose Oxidase/química , Peróxido de Hidrogênio/química , Esterilização/métodos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Camundongos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Glucose
2.
Biomacromolecules ; 25(6): 3671-3684, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38720431

RESUMO

Reactive oxygen species (ROS) have emerged as a promising treatment option for antibacterial and biofilm eradication. However, their therapeutic efficacy is significantly hampered by the unique microenvironments of diabetic wounds. In this study, we designed and synthesized porphyrin-based Fe covalent organic frameworks (Fe-COF) through a Schiff base condensation reaction. Subsequently, Fe-COF were encapsulated with hyaluronic acid (HA) through electrostatic adsorption, resulting in a novel formulation named HA-Fe-COF for diabetic wound healing. HA-Fe-COF were engineered to respond to hyaluronidase in the infected wound, leading to the controlled release of Fe-COF. Those released Fe-COF served a dual role as photosensitizers, generating singlet oxygen and localized heating when exposed to dual light sources. Additionally, they acted as peroxidase-like nanozymes, facilitating the production of ROS through enzymatic reactions. This innovative approach enabled a synergistic therapeutic effect combining photodynamic, photothermal, and chemodynamic modalities. Furthermore, the sustained release of HA from HA-Fe-COF promoted angiogenesis, collagen deposition, and re-epithelialization during the diabetic wound healing process. This "all-in-one" strategy offers a novel approach for the development of antimicrobial and biofilm eradication strategies that minimize damage to healthy tissues in vivo.


Assuntos
Ácido Hialurônico , Estruturas Metalorgânicas , Porfirinas , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Porfirinas/química , Porfirinas/farmacologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Pele/efeitos dos fármacos , Humanos , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Ferro/química , Fotoquimioterapia/métodos , Hialuronoglucosaminidase
3.
Int J Mol Sci ; 25(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39063139

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has emerged as the leading cause of chronic liver disease worldwide. Caspase 8 and FADD-like apoptosis regulator (CFLAR) has been identified as a potent factor in mitigating non-alcoholic steatohepatitis (NASH) by inhibiting the N-terminal dimerization of apoptosis signal-regulating kinase 1 (ASK1). While arginine methyltransferase 1 (PRMT1) was previously reported to be associated with increased hepatic glucose production, its involvement in hepatic lipid metabolism remains largely unexplored. The interaction between PRMT1 and CFLAR and the methylation of CFLAR were verified by Co-IP and immunoblotting assays. Recombinant adenoviruses were generated for overexpression or knockdown of PRMT1 in hepatocytes. The role of PRMT1 in NAFLD was investigated in normal and high-fat diet-induced obese mice. In this study, we found a significant upregulation of PRMT1 and downregulation of CFLAR after 48h of fasting, while the latter significantly rebounded after 12h of refeeding. The expression of PRMT1 increased in the livers of mice fed a methionine choline-deficient (MCD) diet and in hepatocytes challenged with oleic acid (OA)/palmitic acid (PA). Overexpression of PRMT1 not only inhibited the expression of genes involved in fatty acid oxidation (FAO) and promoted the expression of genes involved in fatty acid synthesis (FAS), resulting in increased triglyceride accumulation in primary hepatocytes, but also enhanced the gluconeogenesis of primary hepatocytes. Conversely, knockdown of hepatic PRMT1 significantly alleviated MCD diet-induced hepatic lipid metabolism abnormalities and liver injury in vivo, possibly through the upregulation of CFLAR protein levels. Knockdown of PRMT1 suppressed the expression of genes related to FAS and enhanced the expression of genes involved in FAO, causing decreased triglyceride accumulation in OA/PA-treated primary hepatocytes in vitro. Although short-term overexpression of PRMT1 had no significant effect on hepatic triglyceride levels under physiological conditions, it resulted in increased serum triglyceride and fasting blood glucose levels in normal C57BL/6J mice. More importantly, PRMT1 was observed to interact with and methylate CFLAR, ultimately leading to its ubiquitination-mediated protein degradation. This process subsequently triggered the activation of c-Jun N-terminal kinase 1 (JNK1) and lipid deposition in primary hepatocytes. Together, these results suggested that PRMT1-mediated methylation of CFLAR plays a critical role in hepatic lipid metabolism. Targeting PRMT1 for drug design may represent a promising strategy for the treatment of NAFLD.


Assuntos
Hepatócitos , Metabolismo dos Lipídeos , Fígado , Hepatopatia Gordurosa não Alcoólica , Proteína-Arginina N-Metiltransferases , Animais , Humanos , Masculino , Camundongos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Dieta Hiperlipídica/efeitos adversos , Hepatócitos/metabolismo , Fígado/metabolismo , Metilação , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética
4.
Phytother Res ; 37(12): 5787-5802, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37580045

RESUMO

Schwann cells injury induced by high glucose (HG) contributes to the development of diabetic peripheral neuropathy (DPN). Honokiol has been reported to regulate glucose metabolism, however, its effect on DPN and the precise molecular mechanisms remain unclear. This study aimed to investigate the role of AMPK/SIRT1/PGC-1α axis in the protective effects of honokiol on DPN. The biochemical assay and JC-1 staining results demonstrated that honokiol reduced HG-induced oxidative stress and ferroptosis as well as mitochondrial dysfunction in Schwann cells. RT-qPCR and western blotting were utilized to investigate the mechanism of action of honokiol, and the results showed that HG-induced inhibition of AMPK/SIRT1/PGC-1α axis and changes of downstream gene expression profile were restored by honokiol. Moreover, silencing of Sirt1 by siRNA delivery markedly diminished the changes of gene expression profile induced by honokiol in HG-induced Schwann cells. More importantly, we found that administration of honokiol remarkably attenuated DPN via improving sciatic nerve conduction velocity and increasing thermal and mechanical sensitivity in streptozotocin-induced diabetic rats. Collectively, these results demonstrate that honokiol can attenuate HG-induced Schwann cells injury and peripheral nerve dysfunction, suggesting a novel potential strategy for treatment of DPN.


Assuntos
Diabetes Mellitus Experimental , Ferroptose , Doenças do Sistema Nervoso Periférico , Ratos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Sirtuína 1/metabolismo , Células de Schwann , Glucose/metabolismo
5.
J Appl Toxicol ; 36(3): 454-63, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26594009

RESUMO

Copper nanoclusters (CuNCs) are increasingly being used in nanomedicine owing to their utility in cellular imaging and as catalysts. Additionally, nanotoxicology research of CuNCs is gaining attention. We report here the synthesis and characterization of CuNCs and their cytotoxic impact on muscle cells. A simple protein-directed synthesis of stable CuNCs was prepared, using bovine serum albumin as the stabling agent. Physicochemical characterization of the synthesized CuNCs was performed using transmission electron microscopy. To evaluate the in vitro cytotoxicity, C2C12 cells were exposed to increasing doses (from 0.1 to 50 µg ml(-1)) of CuNCs. CuNCs affected the viability of C2C12 cells in a dose-dependent manner, as detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and a lactate dehydrogenase release assay. Further studies indicated that CuNCs induced the formation of reactive oxygen species and decreased the activities of catalase and glutathione. CuNC treatment decreased the mitochondrial membrane potential and induced apoptosis, accompanied by an increase in the protein expression ratio of Bax/Bcl-2 and caspase-3/9 activity in C2C12 cells. CuNCs treatment resulted in atrophy of the C2C12 myotubes, which was characterized by the increased expression of atrophy-related genes, such as atrogin-1 and MuRF1. Finally, CuNCs induce morphological atrophy of primary muscle cells and mouse gastrocnemius muscle. Taken together, these results suggest that exposure to CuNCs may be a risk factor for the skeletal muscle system.


Assuntos
Apoptose/efeitos dos fármacos , Sulfato de Cobre/toxicidade , Nanopartículas Metálicas/toxicidade , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/induzido quimicamente , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Catalase/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sulfato de Cobre/química , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Glutationa/metabolismo , L-Lactato Desidrogenase/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas Metálicas/química , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície , Fatores de Tempo
6.
Phytother Res ; 30(10): 1680-1688, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27397144

RESUMO

Astragaloside I (As-I), one of the main active ingredients in Astragalus membranaceus, is believed to have osteogenic properties, but this hypothesis has not been investigated in detail. In the present work, the As-I-induced osteogenic effects and its underlying mechanism were studied in MC3T3-E1 cells. The results indicated that the cellular levels of ALP and extracellular matrix calcium increased in a dose-dependent manner by As-I. To clarify the mechanisms involved in this process, the effect of As-I on the key osteogenic-related genes was investigated. We found that As-I stimulated the expression of ß-catenin and Runx2 in MC3T3-E1 cells, which play central roles in the Wnt/ß-catenin signaling pathway, suggesting that As-I could promote osteoblastic differentiation by regulating the Wnt/ß-catenin signaling pathway. Moreover, the osteogenic effect of As-I could be inhibited by DKK-1, which is the classical inhibitor of Wnt/ß-catenin-signaling pathway. Furthermore, As-I also increased BMP-2, BGP and OPG/RANKL expression, which are also activated by Wnt/ß-catenin signaling pathway. Taken together, our findings show that As-I stimulates osteoblast differentiation through the Wnt/ß-catenin signaling pathway, which also activates the BMP pathway and RANK pathway, thus highlighting the As-I for pharmaceutical and medicinal applications such as treating bone disease. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Osteoblastos/efeitos dos fármacos , Saponinas/química , Triterpenos/química , Via de Sinalização Wnt/imunologia , Diferenciação Celular , Osteogênese/efeitos dos fármacos
7.
Yao Xue Xue Bao ; 49(4): 476-81, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24974464

RESUMO

The effects of magnolol (Mag) on hyperglycemia and hyperlipemia, hepatic oxidative stress and cytochrome P4502E1 (CYP2E1) activity of diabetic rats induced by high-fat diet (HFD) and streptozotocin (STZ) were studied. After oral administration of Mag (25, 50 and 100 mg x kg(-1) x d(-1)) for continuous 10 weeks, the blood glucose and lipids (TC, TG and LDL-C) levels, as well as the hepatic CYP2E1 activity and MDA content of diabetic rats, decreased significantly (P < 0.05 or P < 0.01), whereas the oral glucose tolerance and hepatic antioxidant enzymatic activities (CAT and GSH-Px) of diabetic rats, increased significantly (P < 0.05 or P < 0.01). The results indicated that Mag was effective against the hepatic oxidative damage, hyperglycemia and hyperlipemia of diabetic rats induced by HFD and STZ, and the inhibition of Mag on hepatic CYP2E1 activity could be an important mechanism of Mag against hepatic insulin resistance and oxidative damage.


Assuntos
Compostos de Bifenilo/farmacologia , Citocromo P-450 CYP2E1/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Lignanas/farmacologia , Animais , Compostos de Bifenilo/isolamento & purificação , Glicemia/metabolismo , Colesterol/sangue , LDL-Colesterol/sangue , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica , Teste de Tolerância a Glucose , Hipoglicemiantes/isolamento & purificação , Lignanas/isolamento & purificação , Fígado/metabolismo , Magnolia/química , Masculino , Estresse Oxidativo/efeitos dos fármacos , Plantas Medicinais/química , Substâncias Protetoras/farmacologia , Ratos , Ratos Wistar , Estreptozocina , Triglicerídeos/sangue
8.
Acta Biomater ; 175: 226-239, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38159897

RESUMO

Nano-induced endothelial leakiness (NanoEL) can improve the ability of nanoparticles (NPs) to enter the tumor environment, nevertheless, it can inadvertently trigger adverse effects such as tumor metastasis. To overcome these concerns, it becomes important to develop a NPs design strategy that capitalizes on the NanoEL effect while averting unwanted side effects during the drug delivery process. Herein, we introduce the PLGA-ICG-PEI-Ang1@M NP which has a core comprising poly (lactic-co-glycolic acid) (PLGA) and the inner shell with a highly positively charged polyethyleneimine (PEI) and the anti-permeability growth factor Angiopoietin 1 (Ang1), while the outer shell is camouflaged with a Jurkat cell membrane. During the drug delivery process, our NPs exhibit their capability to selectively target and penetrate endothelial cell layers. Once the NPs penetrate the endothelial layer, the proton sponge effect triggered by PEI in the acidic environment surrounding the tumor site can rupture the cell membrane on the NPs' surface. This rupture, in turn, enables the positively charged Ang1 to be released due to the electrostatic repulsion from PEI and the disrupted endothelial layer can be restored. Consequently, the designed NPs can penetrate endothelial layers, promote the cell layer recovery, restrict the tumor metastasis, and facilitate efficient cancer therapy. STATEMENT OF SIGNIFICANCE.


Assuntos
Nanopartículas , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Poliglicólico/farmacologia , Ácido Láctico/farmacologia , Linhagem Celular Tumoral , Células Endoteliais
9.
J Hepatol ; 58(3): 535-42, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23111009

RESUMO

BACKGROUND & AIMS: The expression levels of microRNA-29 (miR-29) family members (miR-29a, miR-29b, miR-29c, here denoted collectively as miR-29a-c) are increased in livers of Goto-Kakizaki diabetic rats and db/db diabetic mice. However, the functional consequences of miR-29a-c upregulation in diabetic livers are not explored. The objective of this study was to evaluate the roles of miR-29a-c in the regulation of hepatic glucose production and blood glucose levels using different mouse models. METHODS: db/m, db/db diabetic and diet-induced obese (DIO) mice were injected with adenovirus expressing miR-29a-c through the tail vein. Blood glucose levels were measured and glucose-tolerance tests and pyruvate-tolerance tests were performed. To explore the molecular mechanism by which miR-29a-c regulate hepatic glucose metabolism, gain or loss of miR-29a-c function studies were performed in primary mouse hepatocytes and the direct effectors of miR-29-mediated effects on glucose metabolism were identified. RESULTS: Adenovirus-mediated overexpression of miR-29a-c in the livers of db/m, db/db, and DIO mice decreased fasting blood glucose levels and improved glucose tolerance. Overexpression of miR-29a-c in primary hepatocytes and mouse livers decreased the protein levels of PGC-1α and G6Pase, the direct targets of miR-29a-c, thereby reducing cellular, and hepatic glucose production. In contrast, loss of miR-29a-c function in primary hepatocytes increased the protein levels of PGC-1α and G6Pase and increased cellular glucose production. Finally, enforced expression of PGC-1α increased miR-29a-c expression levels in primary hepatocytes, thus forming a negative feedback regulation loop. CONCLUSIONS: miR-29a-c can regulate hepatic glucose production and glucose tolerance in mice.


Assuntos
Glicemia/análise , Jejum/metabolismo , Gluconeogênese , Fígado/metabolismo , MicroRNAs/fisiologia , Animais , Colforsina/farmacologia , Dexametasona/farmacologia , Glucose-6-Fosfatase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Transativadores/genética , Fatores de Transcrição
10.
Environ Sci Pollut Res Int ; 30(45): 101075-101090, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37646927

RESUMO

Land use change greatly affects the runoff characteristics of the basin, which in turn affects the distribution of surface water and groundwater in the region. Quantitative analyses of the hydrological response of watershed runoff to land use change are conducive to the formulation of sustainable water resource strategies. In this paper, the impact of land use change on runoff characteristics in the Jing River Basin was evaluated using the SWAT model, the land use pattern of the Jing River Basin in 2040 was predicted using CA-Markov model, and five land use change scenarios were set up in combination with the trend of land use transfer, and the response relationship between land use change and runoff hydrological characteristics in the basin was studied. The results show that the land use changes reduce runoff and change the hydrological cycle process of the basin. The hydrological response of different land use types varies significantly, but only has a less impact on annual runoff. Farmland has a promoting effect on production flow; woodland and grassland are not conducive to the formation of surface runoff and will increase underground runoff and evapotranspiration in the basin. The increase in vegetation coverage after returning farmland to woodlands and grasslands has reduced surface runoff, increased the recharge of groundwater, and played a positive role in ecological restoration in the river basin. The research results are of great significance for understanding the hydrological consequences of land use change and the rational planning of land use patterns in river basins.


Assuntos
Água Subterrânea , Movimentos da Água , Rios , Ciclo Hidrológico , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA