Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
Nature ; 619(7968): 73-77, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37316660

RESUMO

High-entropy alloy nanoparticles (HEA-NPs) show great potential as functional materials1-3. However, thus far, the realized high-entropy alloys have been restricted to palettes of similar elements, which greatly hinders the material design, property optimization and mechanistic exploration for different applications4,5. Herein, we discovered that liquid metal endowing negative mixing enthalpy with other elements could provide a stable thermodynamic condition and act as a desirable dynamic mixing reservoir, thus realizing the synthesis of HEA-NPs with a diverse range of metal elements in mild reaction conditions. The involved elements have a wide range of atomic radii (1.24-1.97 Å) and melting points (303-3,683 K). We also realized the precisely fabricated structures of nanoparticles via mixing enthalpy tuning. Moreover, the real-time conversion process (that is, from liquid metal to crystalline HEA-NPs) is captured in situ, which confirmed a dynamic fission-fusion behaviour during the alloying process.

2.
Nature ; 621(7980): 773-781, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37612513

RESUMO

Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.


Assuntos
Biodiversidade , Meio Ambiente , Espécies Introduzidas , Árvores , Bases de Dados Factuais , Atividades Humanas , Espécies Introduzidas/estatística & dados numéricos , Espécies Introduzidas/tendências , Filogenia , Chuva , Temperatura , Árvores/classificação , Árvores/fisiologia
3.
Nature ; 624(7990): 92-101, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957399

RESUMO

Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2-5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151-363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.


Assuntos
Sequestro de Carbono , Carbono , Conservação dos Recursos Naturais , Florestas , Biodiversidade , Carbono/análise , Carbono/metabolismo , Conservação dos Recursos Naturais/estatística & dados numéricos , Conservação dos Recursos Naturais/tendências , Atividades Humanas , Recuperação e Remediação Ambiental/tendências , Desenvolvimento Sustentável/tendências , Aquecimento Global/prevenção & controle
4.
Am J Hum Genet ; 111(5): 954-965, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38614075

RESUMO

Variability in quantitative traits has clinical, ecological, and evolutionary significance. Most genetic variants identified for complex quantitative traits have only a detectable effect on the mean of trait. We have developed the mean-variance test (MVtest) to simultaneously model the mean and log-variance of a quantitative trait as functions of genotypes and covariates by using estimating equations. The advantages of MVtest include the facts that it can detect effect modification, that multiple testing can follow conventional thresholds, that it is robust to non-normal outcomes, and that association statistics can be meta-analyzed. In simulations, we show control of type I error of MVtest over several alternatives. We identified 51 and 37 previously unreported associations for effects on blood-pressure variance and mean, respectively, in the UK Biobank. Transcriptome-wide association studies revealed 633 significant unique gene associations with blood-pressure mean variance. MVtest is broadly applicable to studies of complex quantitative traits and provides an important opportunity to detect novel loci.


Assuntos
Pressão Sanguínea , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Humanos , Pressão Sanguínea/genética , Polimorfismo de Nucleotídeo Único , Modelos Genéticos , Genótipo , Variação Genética , Simulação por Computador , Fenótipo
5.
Proc Natl Acad Sci U S A ; 120(2): e2210690120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36598950

RESUMO

The filovirus VP40 protein directs virion egress, which is regulated either positively or negatively by select VP40-host interactions. We demonstrate that host BAG3 and HSP70 recognize VP40 as a client and inhibit the egress of VP40 virus-like particles (VLPs) by promoting degradation of VP40 via Chaperone-assisted selective autophagy (CASA). Pharmacological inhibition of either the early stage formation of the VP40/BAG3/HSP70 tripartite complex, or late stage formation of autolysosomes, rescued VP40 VLP egress back to WT levels. The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of autophagy, and we found that surface expression of EBOV GP on either VLPs or an infectious VSV recombinant virus, activated mTORC1. Notably, pharmacological suppression of mTORC1 signaling by rapamycin activated CASA in a BAG3-dependent manner to restrict the egress of both VLPs and infectious EBOV in Huh7 cells. In sum, our findings highlight the involvement of the mTORC1/CASA axis in regulating filovirus egress.


Assuntos
Ebolavirus , Humanos , Ebolavirus/metabolismo , Transdução de Sinais , Macroautofagia , Vírion/metabolismo , Proteínas da Matriz Viral/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo
6.
PLoS Pathog ; 19(8): e1011595, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37585478

RESUMO

Ebola (EBOV) and Marburg viruses (MARV) cause severe hemorrhagic fever associated with high mortality rates in humans. A better understanding of filovirus-host interactions that regulate the EBOV and MARV lifecycles can provide biological and mechanistic insight critical for therapeutic development. EBOV glycoprotein (eGP) and MARV glycoprotein (mGP) mediate entry into host cells primarily by actin-dependent macropinocytosis. Here, we identified actin-binding cytoskeletal crosslinking proteins filamin A (FLNa) and B (FLNb) as important regulators of both EBOV and MARV entry. We found that entry of pseudotype psVSV-RFP-eGP, infectious recombinant rVSV-eGP-mCherry, and live authentic EBOV and MARV was inhibited in filamin A knockdown (FLNaKD) cells, but was surprisingly enhanced in filamin B knockdown (FLNbKD) cells. Mechanistically, our findings suggest that differential regulation of macropinocytosis by FLNa and FLNb likely contributes to their specific effects on EBOV and MARV entry. This study is the first to identify the filamin family of proteins as regulators of EBOV and MARV entry. These findings may provide insight into the development of new countermeasures to prevent EBOV and MARV infections.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Marburgvirus , Humanos , Filaminas/genética , Ebolavirus/genética , Actinas , Marburgvirus/genética , Glicoproteínas
7.
Chem Soc Rev ; 53(12): 6021-6041, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38738520

RESUMO

High-entropy alloys (HEAs) involving more than four elements, as emerging alloys, have brought about a paradigm shift in material design. The unprecedented compositional diversities and structural complexities of HEAs endow multidimensional exploration space and great potential for practical benefits, as well as a formidable challenge for synthesis. To further optimize performance and promote advanced applications, it is essential to synthesize HEAs with desired characteristics to satisfy the requirements in the application scenarios. The properties of HEAs are highly related to their chemical compositions, microstructure, and morphology. In this review, a comprehensive overview of the controllable synthesis of HEAs is provided, ranging from composition design to morphology control, structure construction, and surface/interface engineering. The fundamental parameters and advanced characterization related to HEAs are introduced. We also propose several critical directions for future development. This review can provide insight and an in-depth understanding of HEAs, accelerating the synthesis of the desired HEAs.

8.
Traffic ; 23(3): 140-157, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34994051

RESUMO

The extremely dynamic life cycle of gap junction connections requires highly efficient intracellular trafficking system especially designed for gap junction proteins, but the underlying mechanisms are largely unknown. Here, we identified that the COPII-associated proteins ERGIC2 (ER-Golgi intermediate compartment) and ERGIC3 are specifically required for the efficient intracellular transport of gap junction proteins in both Caenorhabditis elegans and mice. In the absence of Ergic2 or Ergic3, gap junction proteins accumulate in the ER and Golgi apparatus and the size of endogenous gap junction plaques is reduced. Knocking out the Ergic2 or Ergic3 in mice results in heart enlargement and cardiac malfunction accompanied by reduced number and size of connexin 43 (Cx43) gap junctions. Invertebrates' gap junction protein innexins share no sequence similarity with vertebrates' connexins. However, ERGIC2 and ERGIC3 could bind to gap junction proteins in both worms and mice. Characterization of the highly specialized roles of ERGIC2 and ERGIC3 in metazoans reveals how the early secretory pathway could be adapted to facilitate the efficient transport for gap junction proteins in vivo.


Assuntos
Conexinas , Complexo de Golgi , Animais , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Complexo de Golgi/metabolismo , Camundongos , Via Secretória , Proteínas de Transporte Vesicular
9.
J Am Chem Soc ; 146(11): 7118-7123, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38437170

RESUMO

High-entropy oxides (HEOs) with an ultrathin geometric structure are especially expected to exhibit extraordinary performance in different fields. The phase structure is deemed as a key factor in determining the properties of HEOs, rendering their phase control synthesis tempting. However, the disparity in intrinsic phase structures and physicochemical properties of multiple components makes it challenging to form single-phase HEOs with the target phase. Herein, we proposed a self-lattice framework-guided strategy to realize the synthesis of ultrathin HEOs with desired phase structures, including rock-salt, spinel, perovskite, and fluorite phases. The participation of the Ga assistor was conducive to the formation of the high-entropy mixing state by decreasing the formation energy. The as-prepared ultrathin spinel HEOs were demonstrated to be an excellent catalyst with high activity and stability for the oxygen evolution reaction in water electrolysis. Our work injects new vitality into the synthesis of HEOs for advanced applications and undoubtedly expedites their phase engineering.

10.
Anal Chem ; 96(5): 2152-2157, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38279912

RESUMO

Sensing materials innovation plays a crucial role in the development of high-performance film-based fluorescent sensors (FFSs). In our current study, we present the innovative fabrication of four fluorescent nanofilms via interfacially confined dynamic reaction of a specially designed fluorescent building block, a new boron-coordinated compound (NI-CHO), with a chosen one, benzene-1,3,5-tricarbohydrazide (BTH). The nanofilms as prepared are robust, uniform, flexible, and thickness tunable, at least from 40 to 1500 nm. The fabricated FFSs based on Film 3, one of the four nanofilms, shows highly selective and fully reversible response to NH3 vapor with an experimental detection limit of <0.1 ppm and a response time of 0.2 s. The unprecedented high performance of the nanofilm is ascribed to the specific quenching of its fluorescence emission owing to formation of an excited-state complex between the sensing unit and the analyte molecule. Efficient mass transfer also contributes to the high performance owing to the porous adlayer structure of the nanofilm. This work provides an example to show how to develop a high-performance sensing film via controlling the film's structure, especially the thickness.

12.
PLoS Genet ; 17(11): e1009940, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34843479

RESUMO

The UNC-104/KIF1A motor is crucial for axonal transport of synaptic vesicles, but how the UNC-104/KIF1A motor is activated in vivo is not fully understood. Here, we identified point mutations located in the motor domain or the inhibitory CC1 domain, which resulted in gain-of-function alleles of unc-104 that exhibit hyperactive axonal transport and abnormal accumulation of synaptic vesicles. In contrast to the cell body localization of wild type motor, the mutant motors accumulate on neuronal processes. Once on the neuronal process, the mutant motors display dynamic movement similarly to wild type motors. The gain-of-function mutation on the motor domain leads to an active dimeric conformation, releasing the inhibitory CC1 region from the motor domain. Genetically engineered mutations in the motor domain or CC1 of UNC-104, which disrupt the autoinhibitory interface, also led to the gain of function and hyperactivation of axonal transport. Thus, the CC1/motor domain-mediated autoinhibition is crucial for UNC-104/KIF1A-mediated axonal transport in vivo.


Assuntos
Transporte Axonal/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Vesículas Sinápticas/genética , Animais , Caenorhabditis elegans/genética , Mutação com Ganho de Função/genética , Engenharia Genética , Cinesinas/genética , Domínios Proteicos
13.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891803

RESUMO

Rabies virus (RABV) is a neurotropic virus that causes fatal neurological disease, raising serious public health issues and attracting extensive attention in society. To elucidate the molecular mechanism of RABV-induced neuronal damage, we used hematoxylin-eosin staining, transmission electron microscopy, transcriptomics analysis, and immune response factor testing to investigate RABV-infected neurons. We successfully isolated the neurons from murine brains. The specificity of the isolated neurons was identified by a monoclonal antibody, and the viability of the neurons was 83.53-95.0%. We confirmed that RABV infection induced serious damage to the neurons according to histochemistry and transmission electron microscope (TEM) scanning. In addition, the transcriptomics analysis suggested that multiple genes related to the pyroptosis pathway were significantly upregulated, including gasdermin D (Gsdmd), Nlrp3, caspase-1, and IL-1ß, as well as the chemokine genes Ccl2, Ccl3, Ccl4, Ccl5, Ccl7, Ccl12, and Cxcl10. We next verified this finding in the brains of mice infected with the rRC-HL, GX074, and challenge virus standard strain-24 (CVS-24) strains of RABV. Importantly, we found that the expression level of the Gsdmd protein was significantly upregulated in the neurons infected with different RABV strains and ranged from 691.1 to 5764.96 pg/mL, while the basal level of mock-infected neurons was less than 100 pg/mL. Taken together, our findings suggest that Gsdmd-induced pyroptosis is involved in the neuron damage caused by RABV infection.


Assuntos
Neurônios , Proteínas de Ligação a Fosfato , Piroptose , Vírus da Raiva , Raiva , Animais , Neurônios/virologia , Neurônios/metabolismo , Neurônios/patologia , Vírus da Raiva/patogenicidade , Vírus da Raiva/fisiologia , Raiva/virologia , Raiva/patologia , Raiva/metabolismo , Camundongos , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Encéfalo/virologia , Encéfalo/patologia , Encéfalo/metabolismo , Gasderminas
14.
Compr Rev Food Sci Food Saf ; 23(4): e13398, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38925595

RESUMO

Food science encounters increasing complexity and challenges, necessitating more efficient, accurate, and sensitive analytical techniques. Mass spectrometry imaging (MSI) emerges as a revolutionary tool, offering more molecular-level insights. This review delves into MSI's applications and challenges in food science. It introduces MSI principles and instruments such as matrix-assisted laser desorption/ionization, desorption electrospray ionization, secondary ion mass spectrometry, and laser ablation inductively coupled plasma mass spectrometry, highlighting their application in chemical composition analysis, variety identification, authenticity assessment, endogenous substance, exogenous contaminant and residue analysis, quality control, and process monitoring in food processing and food storage. Despite its potential, MSI faces hurdles such as the complexity and cost of instrumentation, complexity in sample preparation, limited analytical capabilities, and lack of standardization of MSI for food samples. While MSI has a wide range of applications in food analysis and can provide more comprehensive and accurate analytical results, challenges persist, demanding further research and solutions. The future development directions include miniaturization of imaging devices, high-resolution and high-speed MSI, multiomics and multimodal data fusion, as well as the application of data analysis and artificial intelligence. These findings and conclusions provide valuable references and insights for the field of food science and offer theoretical and methodological support for further research and practice in food science.


Assuntos
Análise de Alimentos , Tecnologia de Alimentos , Espectrometria de Massas , Tecnologia de Alimentos/métodos , Espectrometria de Massas/métodos , Análise de Alimentos/métodos
15.
Angew Chem Int Ed Engl ; 63(25): e202402453, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38622832

RESUMO

Fabrication of large-area thin films through irreversible reactions remains a formidable task. This study reports a breakthrough strategy for in situ synthesis of large-area, free-standing, robust and multi-stimulus responsive thin films through a catalyst-free and irreversible Katritzky reaction at a liquid-liquid interface. The as resulted films are featured with adjustable thickness of 1-3 µm and an area up to 50 cm2. The thin films exhibit fast photo-mechanical motions (a response time of ca 0.1 s), vapor-mechanical motions, as well as photo-chromic and solvato-chromic behaviors. It was revealed that the reason behind the observable motions is proton transfer from the imine groups to the carbonyl structures within the film induced by photo- and/or dimethyl sulfoxide-stimulus. In addition, the films can harvest anionic radicals and the radicals as captured can be efficiently degraded under UV light illumination. This study provides a new strategy for fabricating smart thin films via interfacially confined irreversible Katritzky reaction.

16.
Int J Obes (Lond) ; 47(1): 67-74, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36396857

RESUMO

OBJECTIVES: The aim of this study was to investigate the relationship between body composition and leukocyte telomere length (LTL) in healthy Chinese children aged 6-11 years. METHODS: This cross-sectional study enrolled 406 healthy children (175 girls and 231 boys). The relative telomere length in their peripheral blood leukocytes was determined via quantitative polymerase chain reaction. Dual-energy X-ray absorptiometry was used to determine body fat content and regional fat distribution, appendicular skeletal muscle mass (ASM), bone mineral density (BMD) and bone mineral content (BMC) at the total body (TB) and total body less head (TBLH) levels, and total body lean mass (TBLM) was then determined. ASM/height2 (ASMI) was also calculated. RESULTS: After adjusting for potential covariates, multiple linear regression analyses revealed that neither body fat content nor regional body fat distribution were significantly associated with LTL (ß = -8.48 × 10-6-1.44 × 10-1, p = 0.227-0.959). However, ASM, ASMI, TB BMC/TB BMD, TBLH BMC/TBLH BMD and TBLM were positively associated with LTL (ß = 8.95 × 10-6-4.95 × 10-1, p = 0.005-0.035). Moreover, analysis of covariance revealed there was a statistically significant dose-dependent positive association between LTL and ASM, TB BMC/BMD, TBLH BMC/BMD, and TBLM (p-trend = 0.002-0.025). CONCLUSIONS: Skeletal muscle mass and bone mass but not body fat content or distribution were significantly associated with LTL in this pediatric population.


Assuntos
Composição Corporal , Densidade Óssea , Masculino , Feminino , Humanos , Criança , Estudos Transversais , Composição Corporal/fisiologia , Densidade Óssea/fisiologia , Absorciometria de Fóton , Telômero
17.
J Virol ; 96(6): e0202621, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107375

RESUMO

Ebola virus (EBOV) and Marburg virus (MARV) continue to emerge and cause severe hemorrhagic disease in humans. A comprehensive understanding of the filovirus-host interplay will be crucial for identifying and developing antiviral strategies. The filoviral VP40 matrix protein drives virion assembly and egress, in part by recruiting specific WW domain-containing host interactors via its conserved PPxY late (L) domain motif to positively regulate virus egress and spread. In contrast to these positive regulators of virus budding, a growing list of WW domain-containing interactors that negatively regulate virus egress and spread have been identified, including BAG3, YAP/TAZ, and WWOX. In addition to host WW domain regulators of virus budding, host PPxY-containing proteins also contribute to regulating this late stage of filovirus replication. For example, angiomotin (AMOT) is a multi-PPxY-containing host protein that functionally interacts with many of the same WW domain-containing proteins that regulate virus egress and spread. In this report, we demonstrate that host WWOX, which negatively regulates egress of VP40 virus-like particles (VLPs) and recombinant vesicular stomatitis virus (VSV) M40 virus, interacts with and suppresses the expression of AMOT. We found that WWOX disrupts AMOT's scaffold-like tubular distribution and reduces AMOT localization at the plasma membrane via lysosomal degradation. In sum, our findings reveal an indirect and novel mechanism by which modular PPxY-WW domain interactions between AMOT and WWOX regulate PPxY-mediated egress of filovirus VP40 VLPs. A better understanding of this modular network and competitive nature of protein-protein interactions will help to identify new antiviral targets and therapeutic strategies. IMPORTANCE Filoviruses (Ebola virus [EBOV] and Marburg virus [MARV]) are zoonotic, emerging pathogens that cause outbreaks of severe hemorrhagic fever in humans. A fundamental understanding of the virus-host interface is critical for understanding the biology of these viruses and for developing future strategies for therapeutic intervention. Here, we reveal a novel mechanism by which host proteins WWOX and AMOTp130 interact with each other and with the filovirus matrix protein VP40 to regulate VP40-mediated egress of virus-like particles (VLPs). Our results highlight the biological impact of competitive interplay of modular virus-host interactions on both the virus life cycle and the host cell.


Assuntos
Ebolavirus , Marburgvirus , Oxidorredutase com Domínios WW , Angiomotinas/metabolismo , Ebolavirus/fisiologia , Humanos , Marburgvirus/metabolismo , Proteínas da Matriz Viral/metabolismo , Liberação de Vírus/fisiologia , Oxidorredutase com Domínios WW/metabolismo
18.
New Phytol ; 238(4): 1651-1670, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36829301

RESUMO

Jasmonic acid (JA) is involved in the modulation of defence and growth activities in plants. The best-characterized growth-defence trade-offs stem from antagonistic crosstalk among hormones. In this study, we first confirmed that JA negatively regulates root-knot nematode (RKN) susceptibility via the root exudates (REs) of tomato plants. Omics and toxicological analyses implied that kaempferol, a type of flavonol, from REs has a negative effect on RKN infection. We demonstrated that SlMYB57 negatively regulated kaempferol contents in tomato roots, whereas SlMYB108/112 had the opposite effect. We revealed that JA fine-tuned the homeostasis of kaempferol via SlMYB-mediated transcriptional regulation and the interaction between SlJAZs and SlMYBs, thus ensuring a balance between lateral root (LR) development and RKN susceptibility. Overall, this work provides novel insights into JA-modulated LR development and RKN susceptibility mechanisms and elucidates a trade-off model mediated by JA in plants encountering stress.


Assuntos
Solanum lycopersicum , Tylenchoidea , Animais , Doenças das Plantas , Tylenchoidea/fisiologia , Quempferóis/farmacologia , Raízes de Plantas
19.
FASEB J ; 36(1): e22109, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34941012

RESUMO

We aimed to investigate whether the gut microbiota and fecal short-chain fatty acids (SCFAs) are associated with skeletal muscle mass and strength in healthy Chinese children aged 6-9 years. In this study, 412 children were enrolled. 16S rRNA gene sequencing was used to characterize the gut microbiota compositions. Fecal SCFAs were quantified using high-performance liquid chromatography. Dual X-ray absorptiometry was used to measure the total body lean soft tissue mass (TSM), total body fat mass (TBF), appendicular skeletal muscle mass (ASM), and appendicular fat mass (AFM). TSM/height2 (TSMI), ASM/height2 (ASMI), TSM/weight (TSMR), ASM/weight (ASMR), and the ratio of TSM/TBF and ASM/AFM were calculated. Handgrip strength (HGS) was measured using the Jamar® Plus+ Hand Dynamometer. A multiple regression analysis after adjustment for covariates and multiple test correction showed some operational taxonomic units in partial least squares models identified by Multivariate methods with Unbiased Variable selection analysis such as genera of Faecalibacterium, Lachnospira, Lachnospiraceae_ND3007_group, and Lachnospiraceae_UCG-004 were positively correlated with at least one measure of TSM, TSMI, ASM, ASMI, and ASMI Z-score (ß: 0.103-0.143, pFDR : .008-.032) but negatively correlated with at least one measure of TSMR, TSM/TBF, ASMR, ASM/AFM, and ASMR Z-score (ß: -0.185 to 0.124, pFDR  = .008-.045). Children with higher fecal butyric acid, acetic acid, and total SCFA levels exhibited higher TSM, ASM, TSMI, ASMI, and ASMI Z-score and lower TSM/TBF, ASM/AFM, TSMR, ASMR, and ASMR Z-score. However, after additional adjustment for TBF or body mass index, only the associations for Faecalitalea and Pyramidobacter still existed. Mediation analysis suggested that total body fat significantly mediated 66.3%-95.3% of the estimated association of microbiota and SCFAs with TSM, ASM, and ASMI Z-score. Our results suggest that the associations of gut microbiota and SCFAs with skeletal muscle quality in children may largely depend upon on total body fat content.


Assuntos
Bactérias , Ácidos Graxos/metabolismo , Fezes/microbiologia , Microbioma Gastrointestinal , Força Muscular , Músculo Esquelético/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Criança , Feminino , Humanos , Masculino
20.
Cephalalgia ; 43(4): 3331024231163131, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36946245

RESUMO

BACKGROUND: Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multipotent neuropeptide widely distributed in the trigeminovascular system (TVS) and higher brain regions. At present, the underlying mechanism of PACAP/PACAP type1 (PAC1) receptor in migraine generation remains unclear. METHODS: The rat model of chronic migraine (CM) was established by repeated intraperitoneal injection of nitroglycerin (NTG). Von Frey filaments and hot plate tests were used to measure the mechanical and thermal thresholds. The expression levels of c-Fos, calcitonin gene-related peptide (CGRP), PACAP, PAC1, protein kinase A (PKA) and phosphorylated extracellular signal-regulated kinase (ERK) were assessed by western blotting or immunofluorescence staining. The internalization of PAC1 receptor was visualized by fluorescence microscope and laser scanning confocal microscope. RESULTS: The results showed that c-Fos and CGRP expression significantly increased after repeated administrations of NTG or PACAP. Pitstop2 notably improved hyperalgesia in CM rats, while PACAP6-38 offered no benefit. In addition, PACAP-induced PAC1 receptor internalization, PKA and ERK pathways activation were blocked by Pitstop2 instead of PACAP6-38. CONCLUSIONS: Our results demonstrate that inhibition of PAC1 receptor internalization could effectively improve allodynia in CM rats by restraining ERK signaling pathway activation in a chronic migraine rat model. Modulation of receptor internalization may be a novel perspective to explore specific mechanisms of PACAP signaling activation in the trigeminal vascular system.


Assuntos
Transtornos de Enxaqueca , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Ratos , Animais , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , MAP Quinases Reguladas por Sinal Extracelular , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Hiperalgesia , Sistema de Sinalização das MAP Quinases , Peptídeo Relacionado com Gene de Calcitonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA