Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Invest New Drugs ; 40(5): 875-883, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35674866

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that frequently develops resistance to chemotherapy. A new approach to treating TNBC is required to improve patient survival. Phosphodiesterase-4 (PDE4) is an enzyme that is predominantly involved in the modulation of intracellular signaling mediated by cAMP. Although the efficacy of PDE4 inhibitors in several human inflammatory diseases is well documented, their clinical utility has been limited by side effects, including nausea and emesis. Recently, PDE4 has been used as a potential therapeutic target for different cancer types. In the present study, we investigated the anticancer effects of a novel PDE4 inhibitor ZL-n-91 on TNBC and the underlying mechanism. We showed that ZL-n-91 inhibited the proliferation of TNBC cells, induced cell apoptosis, and caused cell cycle arrest. Western blot analysis showed that ZL-n-91 increased Bax level and reduced Bcl-2 expression. Furthermore, downregulation of the cell cycle-related proteins, such as CDK2, CDK4, cyclin D1, PCNA, p-RB, and ZL-n-91, significantly inhibited the transcription of DNA repair genes and triggered an intracellular DNA damage response. Moreover, ZL-n-91 prevented the growth of the transplanted MDA-MB-231 tumor xenograft in nude mice and increased the γ-H2AX expression. These data demonstrate the anticancer effects of ZL-n-91 on TNBC cells and suggest its potential use in anticancer therapy.


Assuntos
Inibidores da Fosfodiesterase 4 , Neoplasias de Mama Triplo Negativas , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/uso terapêutico , Humanos , Camundongos , Camundongos Nus , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Neoplasias de Mama Triplo Negativas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(5): 1290-1295, 2023 Oct.
Artigo em Zh | MEDLINE | ID: mdl-37846674

RESUMO

OBJECTIVE: To investigate the effects of methionine restriction on proliferation, cell cycle and apoptosis of human acute leukemia cells. METHODS: Cell Counting Kit-8 (CCK-8) assay was used to detect the effect of methionine restriction on HL-60 and Jurkat cells proliferation. The effect of methionine restriction on cell cycle of HL-60 and Jurkat cells was examined by PI staining. Annexin V-FITC / PI double staining was applied to detect apoptosis of HL-60 and Jurkat cells following methionine restriction. The expression of cell cycle-related proteins cyclin B1, CDC2 and apoptosis-related protein Bcl-2 was evaluated by Western blot assay. RESULTS: Methionine restriction significantly inhibited the proliferation of HL-60 and Jurkat cells in a time-dependent manner (HL-60: r =0.7773, Jurkat: r =0.8725), arrested the cells at G2/M phase (P < 0.001), and significantly induced apoptosis of HL-60 and Jurkat cells (HL-60: P < 0.001; Jurkat: P < 0.05). Furthermore, Western blot analysis demonstrated that methionine restriction significantly reduced the proteins expression of Cyclin B1 (P < 0.05), CDC2 (P < 0.01) and Bcl-2 (P < 0.001) in HL-60 and Jurkat cells. CONCLUSION: Acute leukemia cells HL-60 and Jurkat exhibit methionine dependence. Methionine restriction can significantly inhibit the proliferation, promote cell cycle arrest and induce apoptosis of HL-60 and Jurkat cells, which suggests that methionine restriction may be a potential therapeutic strategy for acute leukemia.


Assuntos
Leucemia Mieloide Aguda , Metionina , Humanos , Ciclina B1/genética , Ciclina B1/metabolismo , Ciclina B1/farmacologia , Proliferação de Células , Metionina/farmacologia , Ciclo Celular , Apoptose , Divisão Celular , Proteínas de Ciclo Celular , Células Jurkat , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células HL-60
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA