Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 212(Pt C): 113368, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35513058

RESUMO

Rare earth elements (REEs) are increasingly used in the high-tech sectors in the world and are therefore called burgeoning contaminants. As diffusive gradients in thin films (DGT) can be used to assess the bioavailability of inorganic matters, in this paper, we evaluated, for the first time, the ecotoxicology risks of REEs and their mixtures in river sediments of China's old industrial base by DGT. During our research, taking the Songhua River system (SRS) as an example, we detected its surficial sediments, of which the DGT-labile concentration of REEs (∑REEs) was 2.07-8.76 µg/L. As for the single toxicity, the risk quotient (RQ) values of Y at all sites were significantly greater than 1; while the values of Nd and Pr in some upstream reaches were all significantly greater than the threshold (1), indicating that these adverse effects of single REEs were not neglected. In terms of the combined toxicity of REEs mixtures, we carried out an assessment of the risks of probabilistic ecotoxicology, which showed that the SRS superficial sediments had a low probability of toxicity to aquatic organisms (0.54%).


Assuntos
Metais Terras Raras , Poluentes Químicos da Água , China , Monitoramento Ambiental , Sedimentos Geológicos , Metais Terras Raras/análise , Rios , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
2.
Ecol Evol ; 13(8): e10368, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37546567

RESUMO

The temporal stability of grassland plant communities is substantially affected by soil nutrient enrichment. However, the potential main and interactive effects of arbuscular mycorrhizal fungi (AMF) and soil nitrogen (N) and phosphorus (P) enrichment on the stability of plant productivity have not yet been clarified. We combined a three-year in situ field experiment to assess the impacts of soil fertilization and AMF on the stability of plant productivity. P addition decreased the stability of plant productivity by increasing the standard deviation relative to the mean of plant productivity. However, compared to species richness, the stability of C3 grasses and other functional groups asynchrony were the most important drivers changing the stability of plant productivity. The negative impacts of P addition overrode the impacts of AMF on the stability of plant productivity. Overall, our study suggests the importance of soil nutrient availability over AMF in terms of shaping the stability of plant productivity. Our results also suggest that three-year anthropogenic soil nutrient enrichment could reduce the stability of plant communities in grassland regardless of AMF in the P-limited grassland ecosystem.

3.
Toxics ; 11(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36851025

RESUMO

The occurrence, multi-index assessment, and sources of heavy metals in surface sediments of Zhelin Bay were investigated. Average heavy metal concentrations (mg/kg) were 81.89 (Cr), 770.76 (Mn), 16.81 (Co), 62.25 (Ni), 96.30 (Cu), 162.04 (Zn), and 73.40 (Pb), with the concentrations of studied seven heavy metals being significantly higher than their corresponding background values. Geo-accumulation index (Igeo) and pollution load index (PLI) were implemented to assess degree of heavy metal contamination. The Igeo and PLI indicated that Cr, Mn, Co, Zn, and Pb were slightly polluted, and Cu and Ni were moderately polluted in the region. Potential ecological risk index (RI) and mean possible effect level (PEL) quotient were conducted to assess ecological risk. The RI and mean PEL quotient demonstrated that surface sediments of Zhelin Bay were slight ecological risks and exhibited a 21% probability of toxicity. Principal component analysis (PCA) combined with the correlation analysis (CA) and hierarchical cluster analysis (HAC) revealed that the heavy metal contamination in Zhelin Bay might originate from three type sources.

4.
Environ Pollut ; 324: 121370, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36858102

RESUMO

Aquaculture wetlands, particularly those located within urban areas, are fragile ecosystems due to urban and aquaculture impacts. However, to date, there are no reports on the combined toxicity of heavy metal mixtures in aquatic biota in sediments from aquaculture wetlands in metropolitan areas. Thus, the characterization, bioavailability, and ecological probability risk of heavy metals were studied in the riverine/estuarine sediments of the Rongjiang River in an aquaculture wetland in Chaoshan metropolis, South China. In the study area, the average total concentrations (mg/kg) were 2.38 (Cd), 113.40 (Pb), 88.27 (Cr), 148.25 (Ni), 62.08 (Cu), 125.18 (Zn), 45,636.44 (Fe), and 797.18 (Mn), with the Cd pollution being regarded as extremely serious based on the enrichment factor (EF). There are two main sources of heavy metals in the study area; Ni, Pb, Zn, Fe and Mn are mainly from domestic waste, while Cr, Cd and Cu are possibly associated with industrial production activities. The bioavailability of most heavy metals accounted for more than 20% of the total concentration. The combined toxicity of heavy metal mixtures based on probabilistic risk assessment suggests that the surface sediments of the Rongjiang River and its estuary had a 15.71% probability of toxic effects on aquatic biota.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Áreas Alagadas , Ecossistema , Cádmio , Disponibilidade Biológica , Chumbo , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Metais Pesados/análise , Aquicultura , China , Rios , Sedimentos Geológicos , Medição de Risco
5.
Mar Pollut Bull ; 186: 114445, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36470095

RESUMO

Surface sediments from 21 stations within the Pearl River estuary (PRE) intertidal zone were sampled for heavy metal contamination analysis. Average heavy metal concentrations (mg/kg) in the PRE intertidal zone were 118.5 (Cr), 860.4 (Mn), 19.5 (Co), 72.5 (Ni), 128.1 (Cu), 198.5 (Zn), and 73.0 (Pb), with the concentrations of Mn, Co, Ni, Cu, and Zn being significantly higher than their corresponding background values. The enrichment factor (EF) and geo-accumulation index (Igeo) reveal the same contamination status, with Pb, Ni, Co, Mn, and Cu showing slight to moderate contamination. Overall, the combined heavy metal concentration in the PRE intertidal surface sediments had a 24.7 % probability of toxic effects on aquatic biota based on the joint probabilistic risk (JPR) approach. Principal component analysis (PCA) coupled with the correlation analysis (CA) revealed that the heavy metal contamination in the PRE intertidal zone might originate from natural and anthropogenic sources.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Rios , Estuários , Chumbo/análise , Sedimentos Geológicos/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Metais Pesados/análise , Medição de Risco , China
6.
Mar Pollut Bull ; 185(Pt A): 114209, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36270056

RESUMO

A detailed study of a sediment core from Daya Bay (South China) has revealed three stages of heavy metal deposition over the past century. Prior to the 1980s, heavy metal concentrations were low with limited influence by human activities. From the 1980s to 2000, metal pollution intensified, and anthropogenic activities, such as oil and petrochemical industries, and fuel combustion, had the greatest direct influence on Hg, Ni, Pb, and Zn concentrations, whereas atmospheric deposition and mariculture were also contributors to the continued increase in Cr, Cu, Pb, Zn, and Ni. Since the year 2000, heavy metal concentration has declined and stabilized. It is noteworthy that anthropogenic input of Cu and Pb is ongoing and may result in a moderate pollution risk. Both modified pollution index (MPI) and modified ecological risk (MRI) consistently indicate that the ecological risk in terms of heavy metals in Daya Bay has remained moderate over the past 70 years.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Baías , Sedimentos Geológicos , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Efeitos Antropogênicos , Chumbo , Metais Pesados/análise , China , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA