RESUMO
BACKGROUND: Spontaneous intracerebral hemorrhage (ICH) is associated with alarmingly high rates of disability and mortality, and current therapeutic options are suboptimal. A critical component of ICH pathology is the initiation of a robust inflammatory response, often termed "cytokine storm," which amplifies the secondary brain injury following the initial hemorrhagic insult. The precise sources and consequences of this cytokine-driven inflammation are not fully elucidated, necessitating further investigation. METHODS: To address this knowledge gap, our study conducted a comprehensive cytokine profiling using Luminex® assays, assessing 23 key cytokines. We then employed single-cell RNA sequencing and spatial transcriptomics at three critical time points post-ICH: the hyperacute, acute, and subacute phases. Integrating these multimodal analyses allowed us to identify the cellular origins of cytokines and elucidate their mechanisms of action. RESULTS: Luminex® cytokine assays revealed a significant upregulation of IL-6 and IL-1ß levels at the 24-h post-ICH time point. Through the integration of scRNA-seq and spatial transcriptomics in the hemorrhagic hemisphere of rats, we observed a pronounced activation of cytokine-related signaling pathways within the choroid plexus. Initially, immune cell presence was sparse, but it surged 24 h post-ICH, particularly in the choroid plexus, indicating a substantial shift in the immune microenvironment. We traced the source of IL-1ß and IL-6 to endothelial cells, establishing a link to pyroptosis. Endothelial pyroptosis post-ICH induced the production of IL-1ß and IL-6, which activated microglial polarization characterized by elevated expression of Msr1, Lcn2, and Spp1 via the NF-κB pathway in the choroid plexus. Furthermore, we identified neuronal populations undergoing apoptosis, mediated by the Lcn2-SLC22A17 pathway in response to IL-1ß and IL-6 signaling. Notably, the inhibition of pyroptosis using VX-765 significantly mitigated neurological impairments. CONCLUSIONS: Our study provides evidence that endothelial pyroptosis, characterized by the release of IL-1ß and IL-6, triggers microglial polarization through NF-κB pathway activation, ultimately leading to microglia-mediated neuronal apoptosis in the choroid plexus post-ICH. These findings suggest that targeted therapeutic strategies aimed at mitigating endothelial cell pyroptosis and neutralizing inflammatory cytokines may offer neuroprotection for both microglia and neurons, presenting a promising avenue for ICH treatment.
Assuntos
Apoptose , Plexo Corióideo , Acidente Vascular Cerebral Hemorrágico , Microglia , Piroptose , Ratos Sprague-Dawley , Animais , Piroptose/fisiologia , Plexo Corióideo/metabolismo , Plexo Corióideo/patologia , Ratos , Microglia/metabolismo , Masculino , Apoptose/fisiologia , Acidente Vascular Cerebral Hemorrágico/metabolismo , Acidente Vascular Cerebral Hemorrágico/patologia , Neurônios/metabolismo , Neurônios/patologia , Citocinas/metabolismo , Células Endoteliais/metabolismo , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologiaRESUMO
Glioblastoma (GBM) is the most common malignant brain tumor and has a dismal prognosis even under the current first-line treatment, with a 5-year survival rate less than 7%. Therefore, it is important to understand the mechanism of treatment resistance and develop new anti-tumor strategies. Induction of programmed cell death (PCD) has become a promising anti-tumor strategy, but its effectiveness in treating GBM remains controversial. On the one hand, PCD triggers tumor cell death and then release mediators to draw in immune cells, creating a pro-inflammatory tumor microenvironment (TME). One the other hand, mounting evidence suggests that PCD and inflammatory TME will force tumor cells to evolve under survival stress, leading to tumor recurrence. The purpose of this review is to summarize the role of PCD and inflammatory TME in the tumor evolution of GBM and promising methods to overcome tumor evolution.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Inflamação , Microambiente Tumoral , Glioblastoma/patologia , Glioblastoma/genética , Humanos , Inflamação/patologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Apoptose , AnimaisRESUMO
BACKGROUND: Intratumoral hemorrhage, though less common, could be the first clinical manifestation of glioma and is detectable via MRI; however, its exact impacts on patient outcomes remain unclear and controversial. The 2021 WHO CNS 5 classification emphasised genetic and molecular features, initiating the necessity to establish the correlation between hemorrhage and molecular alterations. This study aims to determine the prevalence of intratumoral hemorrhage in glioma subtypes and identify associated molecular and clinical characteristics to improve patient management. METHODS: Integrated clinical data and imaging studies of patients who underwent surgery at the Department of Neurosurgery at Peking Union Medical College Hospital from January 2011 to January 2022 with pathological confirmation of glioma were retrospectively reviewed. Patients were divided into hemorrhage and non-hemorrhage groups based on preoperative magnetic resonance imaging. A comparison and survival analysis were conducted with the two groups. In terms of subgroup analysis, we classified patients into astrocytoma, IDH-mutant; oligodendroglioma, IDH-mutant, 1p/19q-codeleted; glioblastoma, IDH-wildtype; pediatric-type gliomas; or circumscribed glioma using integrated histological and molecular characteristics, according to WHO CNS 5 classifications. RESULTS: 457 patients were enrolled in the analysis, including 67 (14.7%) patients with intratumoral hemorrhage. The hemorrhage group was significantly older and had worse preoperative Karnofsky performance scores. The hemorrhage group had a higher occurrence of neurological impairment and a higher Ki-67 index. Molecular analysis indicated that CDKN2B, KMT5B, and PIK3CA alteration occurred more in the hemorrhage group (CDKN2B, 84.4% vs. 62.2%, p = 0.029; KMT5B, 25.0% vs. 8.9%, p = 0.029; and PIK3CA, 81.3% vs. 58.5%, p = 0.029). Survival analysis showed significantly worse prognoses for the hemorrhage group (hemorrhage 18.4 months vs. non-hemorrhage 39.1 months, p = 0.01). In subgroup analysis, the multivariate analysis showed that intra-tumoral hemorrhage is an independent risk factor only in glioblastoma, IDH-wildtype (162 cases of 457 overall, HR = 1.72, p = 0.026), but not in other types of gliomas. The molecular alteration of CDK6 (hemorrhage group p = 0.004, non-hemorrhage group p < 0.001), EGFR (hemorrhage group p = 0.003, non-hemorrhage group p = 0.001), and FGFR2 (hemorrhage group p = 0.007, non-hemorrhage group p = 0.001) was associated with shorter overall survival time in both hemorrhage and non-hemorrhage groups. CONCLUSIONS: Glioma patients with preoperative intratumoral hemorrhage had unfavorable prognoses compared to their nonhemorrhage counterparts. CDKN2B, KMT5B, and PIK3CA alterations were associated with an increased occurrence of intratumoral hemorrhage, which might be future targets for further investigation of intratumoral hemorrhage.
Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Masculino , Feminino , Glioma/complicações , Glioma/genética , Glioma/cirurgia , Glioma/patologia , Pessoa de Meia-Idade , Estudos Retrospectivos , Prognóstico , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Idoso , Estudos de Coortes , Adulto JovemRESUMO
BACKGROUND: Glioma is the main subtype of primary central nervous system (CNS) tumor with high malignancy and poor prognosis under current therapeutic approaches. Glycolysis and suppressive tumor microenvironment (TME) are key markers of glioma with great importance for aggressive features of glioma and inferior clinical outcomes. Hexokinase 3 (HK3) is an important rate-limiting enzyme in glycolysis, but its function in glioma remains unknown. METHODS: This study comprehensively assessed the expression distribution and immunological effect of HK3 via pan-cancer analysis based on datasets from Genotype Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE), and The Cancer Genome Atlas (TCGA). Furthermore, it explored the malignant phenotype and genomic landscape between low-HK3 and high-HK3 expression groups in gliomas from Chinese Glioma Genome Atlas (CGGA) and TCGA. Moreover, data from the TIMER website predicted the relationship between macrophage infiltration and HK3 expression. Also, single-cell sequencing data were used to validate the relationship. RESULTS: For pan-cancer patients, HK3 was expressed in various cancers. The results showed that HK3 was highly expressed in gliomas and positively correlated with tumor-infiltrating immune cells (TIICs), immune checkpoints, immunomodulators, and chemokines. Meanwhile, HK3 expression was highest in normal immune cells and tissues. In gliomas, the expression of HK3 was found to be closely correlated with the malignant clinical characteristics and the infiltration of macrophages. Also, HK3 was proven to be positively associated with macrophage through single-cell sequencing data and immunohistochemistry techniques. Finally, it is predicted that samples with high HK3 expression are often malignant entities and also significant genomic aberrations of driver oncogenes. CONCLUSIONS: This is the first comprehensive research to figure out the relationship between HK3 and TME characteristics in gliomas. HK3 is positively associated with macrophage infiltration and can induce the immunosuppressive TME and malignant phenotype of gliomas.
Assuntos
Neoplasias Encefálicas , Glioma , Hexoquinase , Microambiente Tumoral , Humanos , Glioma/patologia , Glioma/genética , Glioma/imunologia , Glioma/enzimologia , Hexoquinase/metabolismo , Hexoquinase/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/imunologia , Microambiente Tumoral/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Regulação Neoplásica da Expressão GênicaRESUMO
The titanosilicate zeolite with a MWW topology structure was synthesized by the atom-planting method through the dehydrochlorination of the hydroxyl group in the deboronated ERB-1 zeolite (D-ERB-1) and TiCl4, and Au was further loaded with the deposition precipitation method to apply for the ethane direct dehydrogenation (DH) and dehydrogenation of ethane in the presence of O2 (O2-DH). It was found that Au nanoparticles (NPs) below 5 nm exhibited good activity for ethane direct dehydrogenation and O2-DH. The addition of titanium can not only anchor more Au but also make Au have a more dispersed homogeneous distribution. The ethane O2-DH catalytic performances of Au-loaded Ti-incorporated D-ERB-1 (Ti-D-ERB-1) were compared to those of Au-loaded ZnO-D-ERB-1 and pure silicate D-ERB-1. The results confirm that ethane O2-DH catalyzed by Au-Ti paired active sites is a tandem reaction of catalytic ethane DH and selective H2 combustion (SHC) of generated H2. According to the experimental results and calculated kinetic parameters, such as the activation energy of DH and SHC reaction heat of O2-DH, SHC catalyzed by the Au/Ti-D-ERB-1 catalyst containing the Au-Ti active site can not only break the ethane dehydrogenation thermodynamic equilibrium limitation to improve the ethylene yield but also suppress the CO2 and CO selectivity.
RESUMO
Notopterygium incisum Ting ex H. T. Chang (N. incisum) is a precious Chinese traditional medicine distributed in high-altitude regions of southwest China. The aim of this study was to investigate the composition, antibacterial activity, and cytotoxicity of essential oil from aerial parts of N. incisum. N. incisum essential oil (NI-EO) was extracted by hydro-distillation, and gas chromatography/mass spectrometry (GC-MS) analysis showed that the major components of NI-EO were D-limonene (18.42%) and γ-terpinene (15.03%). The antibacterial activity and mechanism study showed that the diameters of inhibition zone (DIZs) of NI-EO against E. coli and S. aureus were 14.63 and 11.25 mm and the minimum inhibitory concentrations were 3.75 and 7.5 µL/mL, respectively. NI-EO not only caused intracellular biomacromolecule leakage and cell deformation by destroying bacterial cell wall integrity and cell membrane permeability, but also degraded the mature biofilm. The low toxicity of NI-EO was demonstrated in an assay on bovine mammary epithelial cells. These results implied that NI-EO was mainly composed of monoterpenes and sesquiterpenes and had excellent antibacterial activity and showed low levels of cytotoxicity. It is expected to be applied as a natural antibacterial agent in the future.
Assuntos
Óleos Voláteis , Animais , Bovinos , Óleos Voláteis/farmacologia , Escherichia coli , Staphylococcus aureus , Antibacterianos/toxicidade , Componentes Aéreos da PlantaRESUMO
Von Hippel-Lindau (VHL) syndrome is a multi-organ neoplastic disease characterized by highly vascular and cystic tumors in the central nervous system (CNS), retina, and visceral lesions, which are mainly caused by germline mutations in VHL. We aimed to detect novel mutations in VHL gene in families with VHL. Here, a large consanguineous four-generation family with variant phenotypes of VHL syndrome was recruited, and its molecular genetics were tested via Sanger sequencing. And various tools and databases were used to predict the variant pathogenicity, frequency, and protein function. Genetic investigation detected a c.351G > A nonsense mutation in VHL that altered the downstream reading frame and created a premature TGA stop signal, resulting in severely truncated pVHL (p.Trp117Ter). This mutation is absent from most public databases, and functional prediction bioinformatic tools demonstrated that this residue is conserved and that this variant is highly likely to be deleterious. The c.315G > A nonsense mutation in VHL is the causal mutation of this kindred that may lead to clear familial aggregation of VHL syndrome because of the dysfunction of the truncated pVHL.
RESUMO
OBJECTIVE: To report on a rare case of Neurofibromatosis type 2 (NF2) manifesting as oculomotor nerve palsy and explore its genetic basis. METHODS: A patient with NF2 who had presented at Beijing Ditan Hospital Affiliated to Capital Medical University on July 10, 2021 was selected as the study subject. Cranial and spinal cord magnetic resonance imaging (MRI) was carried out on the patient and his parents. Peripheral blood samples were collected and subjected to whole exome sequencing. Candidate variant was verified by Sanger sequencing. RESULTS: MRI revealed bilateral vestibular Schwannomas, bilateral cavernous sinus meningiomas, popliteal neurogenic tumors, and multiple subcutaneous nodules in the patient. DNA sequencing revealed that he has harbored a de novo nonsense variant of the NF2 gene, namely c.757A>T, which has replaced a codon (AAG) encoding lysine (K) at position 253 with a stop codon (TAG). This has resulted in removal of the Merlin protein encoded by the NF2 gene from position 253 onwards. The variant was not found in public databases. Bioinformatic analysis suggested that the corresponding amino acid is highly conserved. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was rated as pathogenic (PVS1+PS2+PM2_Supporting+PP3+PP4). CONCLUSION: The heterozygous nonsense variant c.757A>T (p.K253*) of the NF2 gene probably underlay the disease in this patient with an early onset, atypical but severe phenotype.
Assuntos
Neurofibromatose 2 , Doenças do Nervo Oculomotor , Masculino , Humanos , Neurofibromatose 2/genética , Genes da Neurofibromatose 2 , Doenças do Nervo Oculomotor/genética , Biologia Computacional , Genômica , MutaçãoRESUMO
In this study, a screen-printed electrode (SPE) modified with cobalt oxide nanoparticles (Co3O4 NPs) was used to create an all-solid-state ion-selective electrode used as a potentiometric ion sensor for determining nitrate ion (NO3-) concentrations in aquaculture water. The effects of the Co3O4 NPs on the characterization parameters of the solid-contact nitrate ion-selective electrodes (SC-NO3--ISEs) were investigated. The morphology, physical properties and analytical performance of the proposed NO3--ion selective membrane (ISM)/Co3O4 NPs/SPEs were studied by X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), potentiometric measurements, and potentiometric water layer tests. Once all conditions were optimized, it was confirmed that the screen-printed electrochemical sensor had high potential stability, anti-interference performance, good reproducibility, and no water layer formation between the selective membrane and the working electrode. The developed NO3--ISM/Co3O4 NPs/SPE showed a Nernstian slope of -56.78 mV/decade for NO3- detection with a wide range of 10-7-10-2 M and a quick response time of 5.7 s. The sensors were successfully used to measure NO3- concentrations in aquaculture water. Therefore, the electrodes have potential for use in aquaponic nutrient solution applications with precise detection of NO3- in a complicated matrix and can easily be used to monitor other ions in aquaculture water.
Assuntos
Nanopartículas , Nitratos , Reprodutibilidade dos Testes , Eletrodos , Eletrodos Seletivos de ÍonsRESUMO
The goal of this work was to use the GC-MS technique to explore the chemical components of Artemisia giraldii Pamp essential oil (AgEo) and to uncover its antibacterial activity, specifically the antibacterial mechanism of this essential oil. There were a total of 63 chemical constituents in the AgEo, monoterpenes (10.2%) and sesquiterpenes (30.14%) were found to be the most common chemical components, with camphor (15.68%) coming in first, followed by germacrene D. (15.29%). AgEo displayed significant reducing power and good scavenging ability on hydroxyl radicals, 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radicals, and 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate (ABTS) radicals, according to antioxidant data. The diameter of the inhibition zone (DIZ) of AgEo against S. aureus and E. coli was (14.00 ± 1.00) mm and (16.33 ± 1.53) mm, respectively; the minimum inhibitory concentration (MIC) of AgEo against E. coli and S. aureus was 3 µL/mL and 6 µL/mL, respectively; and the minimum bactericidal concentration (MBC) of AgEo against E. coli and S. aureus was 6 µL/mL and 12 µL/mL, respectively. The antibacterial curve revealed that 0.5MIC of AgEo may delay bacterial growth while 2MIC of AgEo could totally suppress bacterial growth. The relative conductivity, alkaline phosphatase (AKP) activity, and protein concentration of the bacterial suspension were all higher after the AgEo treatment than in the control group, and increased as the essential oil concentration was raised. In addition, the cell membrane ruptured and atrophy occurred. The study discovered that AgEo is high in active chemicals and can be used as an antibacterial agent against E. coli and S. aureus, which is critical for AgEo's future research and development.
Assuntos
Artemisia , Óleos Voláteis , Antibacterianos/química , Antioxidantes/farmacologia , Antioxidantes/química , Artemisia/química , Escherichia coli , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Staphylococcus aureusRESUMO
Our previous work indicated that feeding oregano essential oil (OEO) in combination with monensin (MON) may not be mutually beneficial to dairy calf growth performance. To evaluate this observation further, a 240-d long-term growth experiment was conducted using 12 young growing Holstein bulls using a 2 × 2 factorial treatment arrangement. Main factors were OEO and MON arranged in 4 individual treatments: (1) ration fed without OEO or MON (control), (2) OEO fed at 26 mg/kg of dry matter (DM), (3) MON fed at 25 mg/kg of DM, and (4) OEO and MON fed in combination (OEO+MON). Holstein bulls were 70 d of age and similar in body weight (BW; 93.3 ± 4.54 kg) and individually fed for 240 d. The targeted feeding rates of OEO and MON were blended into 200 g of concentrate and top dressed each morning to a corn stalklage-based ration. Body weights, frame measurements, and blood samples were collected monthly. Interactions of OEO by MON were detected for BW, BW gain, average daily gain, and a trend for feed conversion. Bulls fed OEO or MON demonstrated greater final BW (368, 385, 381, and 358 kg for control, OEO, MON, and OEO+MON, respectively), and BW gains (278, 292, 285, and 265 kg) and average daily gain (1.16, 1.22, 1.19, 1.11 kg/d) were greatest for bulls fed OEO or MON compared with bulls fed OEO+MON; bulls fed the control were intermediate and similar to bulls fed MON. Intake of DM was greater for bulls fed OEO (6.55, 6.99, 6.60, and 6.42 kg/d) compared with bulls fed remaining treatments. Frame growth gain measurements for heart girth, abdominal girth, withers height, body length, and cannon bone circumference were similar for bulls fed all treatments. Serum triglyceride (0.23, 0.25, 0.28, and 0.24 mmol/L) concentrations were greater for bulls fed MON compared with bulls fed the control and OEO+MON, and bulls fed OEO were intermediate and similar. Cholesterol (2.06, 2.29, 2.20, and 2.07 mmol/L) concentrations were greater for bulls fed OEO compared with bulls fed the control and OEO+MON, and bulls fed MON were intermediate and similar. Serum antioxidant measurements were similar for bulls fed all treatments. Serum IgA, IgG, and IgM concentrations were similar for bulls fed all treatments. Feeding OEO or MON separately can improve growth performance of growing Holstein bulls. We do not know why the combination of OEO and MON is antagonistic to growth performance of Holstein bulls. However, these technologies should not be fed in combination to growing dairy cattle.
Assuntos
Suplementos Nutricionais , Crescimento/efeitos dos fármacos , Monensin/farmacologia , Óleos Voláteis/farmacologia , Origanum/química , Ração Animal , Animais , Peso Corporal/efeitos dos fármacos , Bovinos , Dieta/veterinária , Masculino , Monensin/administração & dosagem , Óleos Voláteis/administração & dosagemRESUMO
BACKGROUND: Human gliomas are highly fatal tumors with a significant feature of immune suppression. The association of the immune system in gliomas is gradually revealed, and immunotherapy is expected to improve the survival of glioma patients. In-depth understanding of the immune microenvironment of gliomas and their associated immunotherapy was increased exponentially in recent years. Gliomas provide clinical targets for immunotherapy during the search of key regulators of immune response. Our study focused on the human leukocyte antigen (HLA) system that is responsible for regulating the immune system, and discovered the relationship between HLA-F expression and clinical prognosis in gliomas. METHODS: A total of 593 patients with gliomas were included in our research. Of these, 325 patients were from the Chinese Glioma Genome Atlas (CGGA) and 268 were from the GSE 16011 set. Kaplan-Meier (KM) analysis was performed to explore the prognostic value of HLA-F. t test analysis was used to find the distribution difference in various groups. R language packages are used for other statistical computations and figure drawing. RESULTS: HLA-F was negatively correlated with overall survival (OS) in all grades of glioma and glioblastoma (GBM). Moreover, HLA-F was enriched in GBM and isocitrate dehydrogenase 1 wild-type (IDH1 wt) group and considered HLA-F as a mesenchymal subtype marker. Pearson correlation test showed that HLA-F was correlated with other HLA-I molecules. CONCLUSION: HLA-F expression was positively correlated with malignant phenotype and negatively correlated with OS, indicating that HLA-F could predict the immune state of gliomas and might be a clinical target of glioma immunotherapy.
Assuntos
Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Glioma/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Neoplasias Encefálicas/genética , Reações Falso-Positivas , Feminino , Ontologia Genética , Glioma/genética , Humanos , Isocitrato Desidrogenase/genética , Masculino , Mutação/genética , RNA Mensageiro/metabolismo , Curva ROCRESUMO
We investigated immune-related long non-coding RNAs (lncRNAs) that may be exploited as potential therapeutic targets in anaplastic gliomas. We obtained 572 lncRNAs and 317 immune genes from the Chinese Glioma Genome Atlas microarray and constructed immune-related lncRNAs co-expression networks to identify immune-related lncRNAs. Two additional datasets (GSE16011, REMBRANDT) were used for validation. Gene set enrichment analysis and principal component analysis were used for functional annotation. Immune-lncRNAs co-expression networks were constructed. Nine immune-related lncRNAs (SNHG8, PGM5-AS1, ST20-AS1, LINC00937, AGAP2-AS1, MIR155HG, TUG1, MAPKAPK5-AS1, and HCG18) signature was identified in patients with anaplastic gliomas. Patients in the low-risk group showed longer overall survival (OS) and progression-free survival than those in the high-risk group (P < 0.0001; P < 0.0001). Additionally, patients in the high-risk group displayed no-deletion of chromosomal arms 1p and/or 19q, isocitrate dehydrogenase wild-type, classical and mesenchymal TCGA subtype, G3 CGGA subtype, and lower Karnofsky performance score (KPS). Moreover, the signature was an independent factor and was significantly associated with the OS (P = 0.000, hazard ratio (HR) = 1.434). These findings were further validated in two additional datasets (GSE16011, REMBRANDT). Low-risk and high-risk groups displayed different immune status based on principal components analysis. Our results showed that the nine immune-related lncRNAs signature has prognostic value for anaplastic gliomas.
Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/imunologia , RNA Longo não Codificante/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Feminino , Predisposição Genética para Doença , Humanos , Estimativa de Kaplan-Meier , Masculino , Análise em Microsséries , Pessoa de Meia-IdadeRESUMO
The malignant transformation of astrocytoma may result from the accumulation of multiple genetic alterations. Current research shows that diffuse astrocytoma (AIIs, WHO grade II) is inherently predisposed to recur locally, and to spontaneously progress to anaplastic astrocytoma (AAIIIs, WHO grade III) and eventually secondary glioblastoma (sGBMIVs, WHO grade IV). The aim of the study was to identify and validate the important gene(s) associated with malignant progression and poor prognosis of astrocytoma. Average expression levels of 82 samples (35 AIIs, 13 AAIIIs and 34 sGBMIVs) were compared to each other through no-paired student test. Candidate genes were screened by DAVID and Kaplan-Meier survival analysis. Further, the significant candidate genes were validated through real-time PCR(qPCR), western blot and immunohistochemistry (IHC) in different grades of glioma. Finally, the association of target gene and clinical molecular characterization was analyzed by Chi-squared analysis. The cell-division cycle protein 20(CDC20, p = 0.0129) and the polo-like kinase 1(PLK1, p = 0.0046) were screened by statistical and Kaplan-Meier survival analysis. The expression levels of CDC20 and PLK1 rose significantly through real-time PCR(qPCR), western blot and IHC. A chi-squared analysis showed that patients with CDC20 high-expression differ from patients with CDC20 low-expression in terms of WHO classification (p < 0.0001), karnofsky performance score (KPS, p < 0.0001), isocitrate dehydrogenase mutation (IDH1, p < 0.0001), phosphatase and tensin homolog mutation (PTEN, p = 0.027) and epidermal growth factor receptor protein amplification (EGFR, p = 0.048). Moreover, the biological processes analyses indicate CDC20 might have an essential role in astrocyte cell proliferation. We demonstrated that the expression level of CDC20 increases significantly along with malignant progression and poor prognosis of astrocytoma.
Assuntos
Astrocitoma/metabolismo , Neoplasias Encefálicas/metabolismo , Proteínas Cdc20/metabolismo , Astrocitoma/patologia , Biomarcadores Tumorais/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Prognóstico , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/metabolismo , Quinase 1 Polo-LikeRESUMO
Increasing evidence suggests that ion channels not only regulate electric signaling in excitable cells but also play important roles in the development of human cancer. However, the roles of ion channels in glioma remain controversial. We systematically analyzed the expression patterns of ion channel genes in a cohort of Chinese patients with glioma using whole-genome mRNA expression profiling. First, a molecular signature comprising 47 ion channel genes (IC47) was identified using Spearman's rank correlation test conducted between tumor grade and gene expression. We assigned a risk score based on IC47 to each glioma patient. We demonstrated that the risk score effectively predicted overall survival in glioma patients. Next, we screened IC47 in different molecular glioma subtypes. IC47 showed a Mesenchymal subtype and wild-type IDH1 preference. Gene ontology (GO) analysis and gene set variation analysis (GSVA) for the functional annotation of IC47 showed that patients with high-risk scores tended to exhibit the decreased expression of proteins associated with the apoptosis and cell adhesion, and higher expression of proteins associated with the cell cycle and cell proliferation. These results suggest that ion channel gene expression could improve the subtype classification in gliomas at the molecular level. The findings in the present study have been validated in two independent cohorts.
Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Canais Iônicos/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Seguimentos , Perfilação da Expressão Gênica , Estudos de Associação Genética , Testes Genéticos , Glioma/metabolismo , Glioma/patologia , Glioma/cirurgia , Humanos , Canais Iônicos/metabolismo , Isocitrato Desidrogenase/genética , Análise em Microsséries , Mutação , Gradação de Tumores , Prognóstico , RNA Mensageiro/metabolismoRESUMO
In clinical practice, the morphology of the left atrial appendage (LAA) plays an important role in the selection of LAA closure devices for LAA closure procedures. The morphology determination is influenced by the segmentation results. The LAA occupies only a small part of the entire 3D medical image, and the segmentation results are more likely to be biased towards the background region, making the segmentation of the LAA challenging. In this paper, we propose a lightweight attention mechanism called fusion attention, which imitates human visual behavior. We process the 3D image of the LAA using a method that involves overview observation followed by detailed observation. In the overview observation stage, the image features are pooled along the three dimensions of length, width, and height. The obtained features from the three dimensions are then separately input into the spatial attention and channel attention modules to learn the regions of interest. In the detailed observation stage, the attention results from the previous stage are fused using element-wise multiplication and combined with the original feature map to enhance feature learning. The fusion attention mechanism was evaluated on a left atrial appendage dataset provided by Liaoning Provincial People's Hospital, resulting in an average Dice coefficient of 0.8855. The results indicate that the fusion attention mechanism achieves better segmentation results on 3D images compared to existing lightweight attention mechanisms.
Assuntos
Apêndice Atrial , Imageamento Tridimensional , Humanos , Apêndice Atrial/diagnóstico por imagem , Imageamento Tridimensional/métodos , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Fibrilação Atrial/cirurgia , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/diagnóstico por imagemRESUMO
Convolutional Neural Networks have been widely applied in medical image segmentation. However, the existence of local inductive bias in convolutional operations restricts the modeling of long-term dependencies. The introduction of Transformer enables the modeling of long-term dependencies and partially eliminates the local inductive bias in convolutional operations, thereby improving the accuracy of tasks such as segmentation and classification. Researchers have proposed various hybrid structures combining Transformer and Convolutional Neural Networks. One strategy is to stack Transformer blocks and convolutional blocks to concentrate on eliminating the accumulated local bias of convolutional operations. Another strategy is to nest convolutional blocks and Transformer blocks to eliminate bias within each nested block. However, due to the granularity of bias elimination operations, these two strategies cannot fully exploit the potential of Transformer. In this paper, a parallel hybrid model is proposed for segmentation, which includes a Transformer branch and a Convolutional Neural Network branch in encoder. After parallel feature extraction, inter-layer information fusion and exchange of complementary information are performed between the two branches, simultaneously extracting local and global features while eliminating the local bias generated by convolutional operations within the current layer. A pure convolutional operation is used in decoder to obtain final segmentation results. To validate the impact of the granularity of bias elimination operations on the effectiveness of local bias elimination, the experiments in this paper were conducted on Flare21 dataset and Amos22 dataset. The average Dice coefficient reached 92.65% on Flare21 dataset, and 91.61% on Amos22 dataset, surpassing comparative methods. The experimental results demonstrate that smaller granularity of bias elimination operations leads to better performance.
Assuntos
Redes Neurais de Computação , Humanos , Abdome/diagnóstico por imagem , Abdome/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Tomografia Computadorizada por Raios X , Bases de Dados FactuaisRESUMO
In the domain of medical image segmentation, traditional diffusion probabilistic models are hindered by local inductive biases stemming from convolutional operations, constraining their ability to model long-term dependencies and leading to inaccurate mask generation. Conversely, Transformer offers a remedy by obviating the local inductive biases inherent in convolutional operations, thereby enhancing segmentation precision. Currently, the integration of Transformer and convolution operations mainly occurs in two forms: nesting and stacking. However, both methods address the bias elimination at a relatively large granularity, failing to fully leverage the advantages of both approaches. To address this, this paper proposes a conditional diffusion segmentation model named TransDiffSeg, which combines Transformer with convolution operations from traditional diffusion models in a parallel manner. This approach eliminates the accumulated local inductive bias of convolution operations at a finer granularity within each layer. Additionally, an adaptive feature fusion block is employed to merge conditional semantic features and noise features, enhancing global semantic information and reducing the Transformer's sensitivity to noise features. To validate the impact of granularity in bias elimination on performance and the impact of Transformer in alleviating the accumulated local inductive biases of convolutional operations in diffusion probabilistic models, experiments are conducted on the AMOS22 dataset and BTCV dataset. Experimental results demonstrate that eliminating local inductive bias at a finer granularity significantly improves the segmentation performance of diffusion probabilistic models. Furthermore, the results confirm that the finer the granularity of bias elimination, the better the segmentation performance.
RESUMO
In clinical practice, the anatomical classification of pulmonary veins plays a crucial role in the preoperative assessment of atrial fibrillation radiofrequency ablation surgery. Accurate classification of pulmonary vein anatomy assists physicians in selecting appropriate mapping electrodes and avoids causing pulmonary arterial hypertension. Due to the diverse and subtly different anatomical classifications of pulmonary veins, as well as the imbalance in data distribution, deep learning models often exhibit poor expression capability in extracting deep features, leading to misjudgments and affecting classification accuracy. Therefore, in order to solve the problem of unbalanced classification of left atrial pulmonary veins, this paper proposes a network integrating multi-scale feature-enhanced attention and dual-feature extraction classifiers, called DECNet. The multi-scale feature-enhanced attention utilizes multi-scale information to guide the reinforcement of deep features, generating channel weights and spatial weights to enhance the expression capability of deep features. The dual-feature extraction classifier assigns a fixed number of channels to each category, equally evaluating all categories, thus alleviating the learning bias and overfitting caused by data imbalance. By combining the two, the expression capability of deep features is strengthened, achieving accurate classification of left atrial pulmonary vein morphology and providing support for subsequent clinical treatment. The proposed method is evaluated on datasets provided by the People's Hospital of Liaoning Province and the publicly available DermaMNIST dataset, achieving average accuracies of 78.81% and 83.44%, respectively, demonstrating the effectiveness of the proposed approach.
RESUMO
PURPOSE: While copper (Cu) is essential for biological organisms, excessive Cu can be harmful. Ferroptosis is a programmed cell death pathway, but the role of ferroptosis in renal injury induced by Cu is limited. The aim of this study was to investigate the role of ferroptosis in kidney injury in chickens and the molecular mechanism by which Cu promotes renal ferroptosis. MATERIALS AND METHODS: Chicken were subjected to Cu treatment by artificially adding excess Cu to the basal diet (the Cu concentration in the diet was supplemented to 110-330â¯mg/kg), and the impact on kidney fibrosis, tissue structure, and ferroptosis-related molecular markers was studied. Then, the expression levels of genes and proteins related to ferroptosis, iron metabolism and ferroautophagy were detected to explore the promoting effect of Cu on ferroptosis in chicken kidney. MAIN FINDINGS: Cu treatment resulted in significant fibrosis and tissue structure damage in chicken kidneys. Molecular analysis revealed a significant upregulation of LC3â ¡, P62, ATG5, and NCOA4, along with a decrease in FTH1 and FTL protein levels. Additionally, crucial markers of ferroptosis, including the loss of GPX4, SLC7A11, and FSP1, and an increase in PTGS2 and ACSL4 protein levels, were observed in chicken kidneys after Cu exposure. CONCLUSION: Our study showed that dietary Cu excess caused kidney injury in brochickens and exhibited ferroptosis-related features, including lipid peroxidation, reduction of ferritin, and downregulation of FSP1 and GPX4. These results indicate that excess Cu can induce renal ferroptosis and lead to kidney injury in chickens. This study highlights the complex interplay between Cu ions and ferroptosis in the context of renal injury and provides a new perspective for understanding the mechanism of Cu-induced renal injury.