Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 278, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783363

RESUMO

Amyloid-ß (Aß) readily misfolds into neurotoxic aggregates, generating high levels of reactive oxygen species (ROS), leading to progressive oxidative damage and ultimately cell death. Therefore, simultaneous inhibition of Aß aggregation and scavenging of ROS may be a promising therapeutic strategy to alleviate Alzheimer's disease pathology. Based on the previously developed antibody 1F12 that targets all forms of Aß42, we developed an Aß42 and ROS dual-targeting nanocomposite using biodegradable mesoporous silica nanoparticles as carriers to load ultra-small cerium oxide nanocrystals (bMSNs@Ce-1F12). By modifying the brain-targeted rabies virus glycoprotein 29 (RVG29-bMSNs@Ce-1F12), this intelligent nanocomposite can efficiently target brain Aß-rich regions. Combined with peripheral and central nervous system treatments, RVG29-bMSNs@Ce-1F12 can significantly alleviate AD symptoms by inhibiting Aß42 misfolding, accelerating Aß42 clearance, and scavenging ROS. Furthermore, this synergistic effect of ROS scavenging and Aß clearance exhibited by this Aß42 and ROS dual-targeted strategy also reduced the burden of hyperphosphorylated tau, alleviated glial cell activation, and ultimately improved cognitive function in APP/PS1 mice. Our findings indicate that RVG29-bMSNs@Ce-1F12 is a promising nanodrug that can facilitate multi-target treatment of AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Cério , Nanocompostos , Espécies Reativas de Oxigênio , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Espécies Reativas de Oxigênio/metabolismo , Peptídeos beta-Amiloides/metabolismo , Nanocompostos/química , Camundongos , Cério/química , Cério/farmacologia , Camundongos Transgênicos , Dióxido de Silício/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Humanos , Encéfalo/metabolismo , Nanopartículas/química , Glicoproteínas/química , Glicoproteínas/farmacologia , Glicoproteínas/metabolismo , Modelos Animais de Doenças , Proteínas Virais
3.
Ageing Res Rev ; 94: 102199, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38232903

RESUMO

Alzheimer's Disease (AD) is an irreversible and progressive neurological disease that has affected at least 50 million people around the globe. Considering the severity of the disease and the continuous increase in the number of patients, the development of new effective drugs or intervention strategies for AD has become urgent. AD is caused by a combination of genetic, environmental, and lifestyle factors, but its exact cause has not yet been clarified. Given the current challenges being faced in the clinical treatment of AD, such as complex AD pathological network and insufficient early diagnosis, herein, we have focused on the three core pathological features of AD, including amyloid-ß (Aß) aggregation, tau phosphorylation and tangles, and activation of inflammatory factors. In this review, we have briefly underscored the primary evidence supporting each pathology and discuss AD pathological network among Aß, tau, and inflammation. We have also comprehensively summarized the most instructive drugs and their treatment strategies against Aß, tau, or neuroinflammation used in basic research and clinical trials. Finally, we have discussed and outlined the pros and cons of each pathological approach and looked forward to potential personalized diagnosis and treatment strategies that are beneficial to AD patients.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/tratamento farmacológico , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fosforilação , Inflamação
4.
Sci Adv ; 10(13): eabm3088, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38536917

RESUMO

Blood exosomes are emerging as potential biomarkers for diagnosing brain diseases such as Alzheimer's disease (AD). There is currently a lack of an ultrasensitive technology for identifying core AD biomarkers in blood exosomes to optimize the utility of biomarkers in clinical practice. Here, an immunomagnetic exosomal polymerase chain reaction (iMEP) platform was developed using DNA-conjugated antibodies for the rapid detection of amyloid-ß (Aß1-40 and Aß1-42) and phosphorylated tau (p-tau396,404 and p-tau181) in clinical blood exosomes. The toehold shift-mediated DNA affinity pulldown eliminates the high detection background, which allows the detection of biomarkers at concentrations down to 10 femtograms per milliliter. With the iMEP assay, exosomal Aß1-42 was more accurate in differentiating patients with AD from healthy individuals compared with exosomal p-tau181 and p-tau396,404, with a sensitivity of 95.0% and a specificity of 95.0%. The iMEP technique is also adept at quantifying the levels of different exosomal biomarkers associated with disease pathogenesis.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Proteínas tau , Peptídeos beta-Amiloides , Biomarcadores , Fragmentos de Peptídeos , DNA , Reação em Cadeia da Polimerase
5.
Plants (Basel) ; 13(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38337873

RESUMO

The protein phosphatase PP2C plays an important role in plant responses to stress. Therefore, the identification of maize PP2C genes that respond to drought stress is particularly important for the improvement and creation of new drought-resistant assortments of maize. In this study, we identified 102 ZmPP2C genes in maize at the genome-wide level. We analyzed the physicochemical properties of 102 ZmPP2Cs and constructed a phylogenetic tree with Arabidopsis. By analyzing the gene structure, conserved protein motifs, and synteny, the ZmPP2Cs were found to be strongly conserved during evolution. Sixteen core genes involved in drought stress and rewatering were screened using gene co-expression network mapping and expression profiling. The qRT-PCR results showed 16 genes were induced by abscisic acid (ABA), drought, and NaCl treatments. Notably, ZmPP2C15 exhibited a substantial expression difference. Through genetic transformation, we overexpressed ZmPP2C15 and generated the CRISPR/Cas9 knockout maize mutant zmpp2c15. Overexpressing ZmPP2C15 in Arabidopsis under drought stress enhanced growth and survival compared with WT plants. The leaves exhibited heightened superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT) activities, elevated proline (Pro) content, and reduced malondialdehyde (MDA) content. Conversely, zmpp2c15 mutant plants displayed severe leaf dryness, curling, and wilting under drought stress. Their leaf activities of SOD, POD, APX, and CAT were lower than those in B104, while MDA was higher. This suggests that ZmPP2C15 positively regulates drought tolerance in maize by affecting the antioxidant enzyme activity and osmoregulatory substance content. Subcellular localization revealed that ZmPP2C15 was localized in the nucleus and cytoplasm. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) experiments demonstrated ZmPP2C15's interaction with ZmWIN1, ZmADT2, ZmsodC, Zmcab, and ZmLHC2. These findings establish a foundation for understanding maize PP2C gene functions, offering genetic resources and insights for molecular design breeding for drought tolerance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA