Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 262: 115170, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37354566

RESUMO

Phytoremediation of heavy metal-polluted soils assisted by plant-associated endophytes, is a suitable method for plant growth and manganese (Mn) removal in contaminated soils. This investigation was conducted to evaluate the Mn-resistant endophytic resources of the Mn hyperaccumulator Arabis paniculata and their functions in the phytoremediation of Mn2+ toxicity. This study isolated an endophytic bacterium with high Mn resistance and indole-3-acetic acid (IAA) production form A. paniculata and identified it as Bacillus sp. AP10 using 16 S rRNA gene sequencing analysis. The effects of Bacillus sp. AP10 on the alleviation of Mn2+ toxicity in Arabidopsis thaliana seedlings and the molecular mechanisms were further investigated using biochemical tests and RNA-seq analysis. Under Mn2+ stress, Bacillus sp. AP10 increased the biomass, chlorophyll content and the translocation factor (TF) values of Mn in the aerial parts, while decreased the malondialdehyde (MDA) content of A. thaliana seedlings compared with that of control plants. The differentially expressed genes (DEGs) and enrichment analysis showed that Bacillus sp. AP10 could significantly increase the expression of key genes involved in cell-wall loosening, which may improve plant growth under Mn stress. Superoxide dismutase (SOD)-encoding genes were detected as DEGs after AP10 treatment. Moreover, AP10 regulated the expression of genes responsible for phenylpropanoid pathway, which may promote antioxidant flavonoids accumulation for reactive oxygen species (ROS) scavenging to improve Mn tolerance. The activation of ATP-binding cassette (ABC) transporter gene expression especially ABCB1 after AP10 stimulation, explained the elevation of metal ion binding or transport related to enhanced Mn accumulation in plants. Futhermore, AP10 might alleviate Mn toxicity through enhancing abscisic acid (ABA) responsive gene expression and ABA biosynthesis. These findings provide new insights into the functions and regulatory mechanism of Bacillus sp. AP10 in promoting plant growth, and tolerance, improving Mn accumulation and alleviating Mn2+ toxicity in plants. The application of Bacillus sp. AP10 as potential phytoremediators may be a promising strategy in Mn2+ contaminated fields. AVAILABILITY OF DATA AND MATERIALS: The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

2.
Plant Dis ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294156

RESUMO

Panax notoginseng (Burkill) F. H. Chen ex C. Y. Wu & K.M. Feng is a Chinese herbal medicinal plant for treating diseases of the central nervous system and cardiovascular system, widely used as a medicine and health-care product. In May 2022, leaf blight disease was found on leaves of 1-year-old P. notoginseng in the plantings (27.904°N, 112.918°E) of Xiangtan City (Hunan) with an area of 104 m2. Over 400 plants were investigated, up to 25% of the plants were symptomatic. From the margin of the leaf, the initial symptoms of water-soaked chlorosis and following dry yellow with slight shrinkage appeared. Later, leaf shrinkage became serious and chlorosis enlarged gradually, leading to leaf death and abscission. To identify the causal agent, 20 leaf lesions (4 mm2) collected from 20 individual 1-year-old plants were sterilized with 75% ethanol for 10 s, 5% NaOCl for 10 s, rinsed in sterilized water three times, placed on potato dextrose agar (PDA) with lactic acid (0.125%) for inhibition the growth of bacteria, and incubated at 28°C for 7 days (Fang, 1998). Five isolates were obtained from 20 leaf lesions of different plants with the isolation rate of 25% and purified by single sporing, which have similar colony and conidia morphology characteristics. One isolate PB2-a was selected randomly for further identification. Colonies of PB2-a on PDA were white with cottony mycelium, developing concentric circles (top view) or light yellow (back view). Conidia (23.1 ± 2.1 × 5.7 ± 0.8 µm, n=30)were fusiform, straight or slightly curved and contained conic basal cell, three light brown median cells and hyaline conic apical cell with appendages. The rDNA internal transcribed spacer (ITS), the translation elongation factor 1-alpha (tef1), and the ß-tubulin (TUB2) genes were amplified from genomic DNA of PB2-a using primers ITS4/ITS5 (White et al. 1990), EF1-526F/EF1-1567R (Maharachchikumbura et al. 2012), and Bt2a/Bt2b (Glass and Donaldson, 1995; O'Donnell and Cigelnik, 1997), respectively. BLAST search of sequenced ITS (OP615100), tef1 (OP681464) and TUB2 (OP681465) exhibited > 99% identity with the type strain of Pestalotiopsis trachicarpicola OP068 (JQ845947, JQ845946 and JQ845945). Phylogenetic tree of the concatenated sequences was constructed based on the maximum-likelihood method using MEGA-X. Isolate PB2-a was identified as P. trachicarpicola based on morphological and molecular data (Maharachchikumbura et al. 2011; Qi et al. 2022). PB2-a was tested for pathogenicity three times to confirm Koch's postulates. Twenty healthy leaves on 20 1-year-old plants were punctured with sterile needles and inoculated with 50 µl of conidial suspension (1×106 conidia/ml). The controls were inoculated with sterile water. All plants were placed in a greenhouse at 25°C under 80% relative humidity. After 7 days, all inoculated leaves developed leaf blight symptoms identical to those described above, whereas the control plants kept healthy. P. trachicarpicola were reisolated from infected leaves, and identical to those of the originals based on the colony characteristics and the sequenced data of ITS, tef1 and TUB2. P. trachicarpicola was reported as a pathogen of leaf blight on Photinia fraseri (Xu et al. 2022). To our knowledge, this is the first report of P. trachicarpicola causing leaf blight on P. notoginseng in Hunan, China. Leaf blight is one of the destructive diseases in P. notoginseng production, identification of the pathogen will be useful to develop effective disease management and protect P. notoginseng, a medical plant with economic value.

3.
Thorax ; 77(8): 752-761, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34716282

RESUMO

BACKGROUND: Extubation to non-invasive ventilation (NIV) has been investigated as a strategy to wean critically ill adults from invasive ventilation and reduce ventilator-related complications. METHODS: We searched MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials, proceedings of four conferences and bibliographies (to June 2020) for randomised and quasi-randomised trials that compared extubation with immediate application of NIV to continued invasive weaning in intubated adults and reported mortality (primary outcome) or other outcomes. Two reviewers independently screened citations, assessed trial quality and abstracted data. RESULTS: We identified 28 trials, of moderate-to-good quality, involving 2066 patients, 44.6% with chronic obstructive pulmonary disease (COPD). Non-invasive weaning significantly reduced mortality (risk ratio (RR) 0.57, 95% CI 0.44 to 0.74; high quality), weaning failures (RR 0.59, 95% CI 0.43 to 0.81; high quality), pneumonia (RR 0.30, 95% CI 0.22 to 0.41; high quality), intensive care unit (ICU) (mean difference (MD) -4.62 days, 95% CI -5.91 to -3.34) and hospital stay (MD -6.29 days, 95% CI -8.90 to -3.68). Non-invasive weaning also significantly reduced the total duration of ventilation, duration of invasive ventilation and duration of ventilation related to weaning (MD -0.57, 95% CI -1.08 to -0.07) and tracheostomy rate. Mortality, pneumonia, reintubation and ICU stay were significantly lower in trials enrolling COPD (vs mixed) populations. CONCLUSION: Non-invasive weaning significantly reduced mortality, pneumonia and the duration of ventilation related to weaning, particularly in patients with COPD. Beneficial effects are less clear (or more careful patient selection is required) in non-COPD patients. PROSPERO REGISTRATION NUMBER: CRD42020201402.


Assuntos
Ventilação não Invasiva , Doença Pulmonar Obstrutiva Crônica , Adulto , Estado Terminal/terapia , Humanos , Unidades de Terapia Intensiva , Doença Pulmonar Obstrutiva Crônica/terapia , Respiração Artificial , Desmame do Respirador
4.
Arch Microbiol ; 204(7): 435, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35763100

RESUMO

Panax notoginseng is a traditional Chinese medicinal herb with diverse properties that is cultivated in a narrow ecological range because of its sensitivity to high temperatures. Endophytic bacteria play a prominent role in plant response to climate warming. However, the endophytic bacterial structures in P. notoginseng at high temperatures are yet unclear. In the present study, the diversity and composition of the endophytic bacterial community, and their relationships with two P. notoginseng plants with different heat tolerance capacities were compared using the full-length 16S rRNA PacBio sequencing system. The results revealed that the diversity and richness of endophytic bacteria were negatively associated with the heat tolerance of P. notoginseng. Beneficial Cyanobacteria, Rhodanobacter and Sphingomonas may be recruited positively by heat-tolerant plants, while higher amounts of adverse Proteobacteria such as Cellvibrio fibrivorans derived from soil destructed the cellular protective barriers of heat-sensitive plants and caused influx of pathogenic bacteria Stenotrophomonas maltophilia. Harmonious and conflicting bacterial community was observed in heat-tolerant and heat-sensitive P. notoginseng, respectively, based on the co-occurrence network. Using functional gene prediction of metabolism, endophytic bacteria have been proposed to be symbiotic with host plants; the bacteria improved primary metabolic pathways and secondary metabolite production of plants, incorporated beneficial endophytes, and combated adverse endophytes to prompt the adaptation of P. notoginseng to a warming environment. These findings provided a new perspective on the function of endophytes in P. notoginseng adaptation to high temperatures, and could pave the way for expanding the cultivable range of P. notoginseng.


Assuntos
Panax notoginseng , Bactérias/genética , Endófitos , Temperatura Alta , Panax notoginseng/genética , Panax notoginseng/microbiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Temperatura
6.
J Intensive Care ; 11(1): 42, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749622

RESUMO

BACKGROUND: Mechanical ventilation may cause pulmonary hypertension in patients with acute lung injury (ALI), but the underlying mechanism remains elucidated. METHODS: ALI was induced in rabbits by a two-hit injury, i.e., hydrochloric acid aspiration followed by mechanical ventilation for 1 h. Rabbits were then ventilated with driving pressure of 10, 15, 20, or 25 cmH2O for 7 h. Clinicopathological parameters were measured at baseline and different timepoints of ventilation. RNA sequencing was conducted to identify the differentially expressed genes in high driving pressure ventilated lung tissue. RESULTS: The two-hit injury induced ALI in rabbits was evidenced by dramatically decreased PaO2/FiO2 in the ALI group compared with that in the control group (144.5 ± 23.8 mmHg vs. 391.6 ± 26.6 mmHg, P < 0.001). High driving pressure ventilation (20 and 25 cmH2O) significantly elevated the parameters of acute pulmonary hypertension at different timepoints compared with low driving pressure (10 and 15 cmH2O), along with significant increases in lung wet/dry ratios, total protein contents in bronchoalveolar lavage fluid, and lung injury scores. The high driving pressure groups showed more pronounced histopathological abnormalities in the lung compared with the low driving pressure groups, accompanied by significant increases in the cross-sectional areas of myocytes, right ventricular weight/body weight value, and Fulton's index. Furthermore, the expression of the genes related to ferroptosis induction was generally upregulated in high driving pressure groups compared with those in low driving pressure groups. CONCLUSIONS: A rabbit model of ventilation-induced pulmonary hypertension in ALI was successfully established. Our results open a new research direction investigating the exact role of ferroptosis in ventilation-induced pulmonary hypertension in ALI.

7.
J Intensive Med ; 3(4): 326-334, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38028638

RESUMO

Background: Venovenous extracorporeal membrane oxygenation (VV-ECMO) has been demonstrated to be effective in treating patients with virus-induced acute respiratory distress syndrome (ARDS). However, whether the management of ECMO is different in treating H1N1 influenza and coronavirus disease 2019 (COVID-19)-associated ARDS patients remains unknown. Methods: This is a retrospective cohort study. We included 12 VV-ECMO-supported COVID-19 patients admitted to The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Eighth People's Hospital, and Wuhan Union Hospital West Campus between January 23 and March 31, 2020. We retrospectively included VV-ECMO-supported patients with COVID-19 and H1N1 influenza-associated ARDS. Clinical characteristics, respiratory mechanics including plateau pressure, driving pressure, mechanical power, ventilatory ratio (VR) and lung compliance, and outcomes were compared. Results: Data from 25 patients with COVID-19 (n=12) and H1N1 (n=13) associated ARDS who had received ECMO support were analyzed. COVID-19 patients were older than H1N1 influenza patients (P=0.004). The partial pressure of arterial carbon dioxide (PaCO2) and VR before ECMO initiation were significantly higher in COVID-19 patients than in H1N1 influenza patients (P <0.001 and P=0.004, respectively). COVID-19 patients showed increased plateau and driving pressure compared with H1N1 subjects (P=0.013 and P=0.018, respectively). Patients with COVID-19 remained longer on ECMO support than did H1N1 influenza patients (P=0.015). COVID-19 patients who required ECMO support also had fewer intensive care unit and ventilator-free days than H1N1. Conclusions: Compared with H1N1 influenza patients, COVID-19 patients were older and presented with increased PaCO2 and VR values before ECMO initiation. The differences between ARDS patients with COVID-19 and influenza on VV-ECMO detailed herein could be helpful for obtaining a better understanding of COVID-19 and for better clinical management.

8.
J Thorac Dis ; 12(5): 1843-1855, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32642088

RESUMO

BACKGROUND: Neutrophil-to-lymphocyte count ratio (NLCR) has been shown as a feasible parameter associated with outcomes of tumor patients and an accessible predictor of bacteremia. However, only a handful of research shed the light on the association between NLCR and outcomes of septic patients. This study is aimed to evaluate the association between NLCR and all-cause mortality in a population of adult septic patients. METHODS: We extracted clinical data from Medical Information Mart for Intensive Care (MIMIC)-III V1.4, a free, large-scale, single-center database. NLCR was computed individually. Patients were categorized by quartiles of NLCR. The associations between NLCR quartiles and 28-day all-cause mortality in septic patients were assessed using Cox proportional hazards models and subgroup analyzes. To evaluate the accuracy of NLCR in predicting 28-day mortality of sepsis, receiver operator characteristic curves (ROC), areas under the curve (AUC), and the Youden's J Index were calculated. Other outcomes included 7-day all-cause mortality, mortality in the intensive care units (ICU), in-hospital mortality and length of ICU stay. RESULTS: A total of 3,043 eligible patients were included in the study, of which, 760, 759, 766 and 758 patients were fallen in the first quartile (≤5.89), the second quartile (>5.89, ≤10.69), the third quartile (>10.69, ≤20.25) and the fourth quartile (>20.25) of NLCR, respectively. The 7-day mortality (13.4%, 9.9%, 13.6% and 14.2%; P=0.064) showed no difference in the four quartiles. In multivariate analysis, after adjusting for confounding factors, the highest NLCR quartile (>20.25) was associated with increased 28-day all-cause mortality [hazard ratio (HR) 1.22, 95% Cl: 1.01-1.49; P=0.046]. The areas under the receiver operating characteristic curves (AUROCs) for NLCR was 0.553 (95% CI: 0.529-0.576) for 28-day mortality. CONCLUSIONS: High NLCR (>20.25) is independently related to increased 28-day all-cause mortality in adult septic patients of a limited sensibility and specificity. Further large multi-center prospective studies are needed to confirm such relationship and to validate whose clinical significance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA