Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Small ; 14(13): e1703732, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29411945

RESUMO

As conjugated polymer nanoparticles (CPNs) have attracted growing interest as photoacoustic (PA) imaging contrast agents, revelation of the relationship between the molecular structure of conjugated polymers and PA property is highly in demand. Here, three donor-acceptor-structured conjugated polymer analogs are designed, where only a single heteroatom of acceptor units changes from oxygen to sulfur to selenium, allowing for systematic investigation of the molecular structure-PA property relationship. The absorption and PA spectra of these CPNs can be facilely tuned by changing the heteroatoms of the acceptor units. Moreover, the absorption coefficient, and in turn the PA signal intensity, decreases when the heteroatom changes from oxygen to sulfur to selenium. As these CPNs exhibit weak fluorescence and similar photothermal conversion efficiency (≈70%), their PA intensities are approximately proportional to their absorption coefficients. The in vivo brain vasculature imaging in this study also demonstrates this trend. This study provides a simple but efficient strategy to manipulate the PA properties of CPNs through changing the heteroatom at key positions.


Assuntos
Nanopartículas/química , Técnicas Fotoacústicas/métodos , Polímeros/química , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos
2.
Sensors (Basel) ; 18(11)2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30469455

RESUMO

This article provides a guide to design and build a handheld, real-time photoacoustic (PA) imaging system from simulation to realization for animal neurological disease models. A pulsed laser and array-based ultrasound (US) platform were utilized to develop the system for evaluating vascular functions in rats with focal ischemia or subcutaneous tumors. To optimize the laser light delivery, finite element (FE)-based simulation models were developed to provide information regarding light propagation and PA wave generation in soft tissues. Besides, simulations were also conducted to evaluate the ideal imaging resolution of the US system. As a result, a PA C-scan image of a designed phantom in 1% Lipofundin was reconstructed with depth information. Performance of the handheld PA system was tested in an animal ischemia model, which revealed that cerebral blood volume (CBV) changes at the cortical surface could be monitored immediately after ischemia induction. Another experiment on subcutaneous tumors showed the anomalous distribution of the total hemoglobin concentration (HbT) and oxygen saturation (SO2), while 3D and maximum intensity projection (MIP) PA images of the subcutaneous tumors are also presented in this article. Overall, this system shows promise for monitoring disease progression in vascular functional impairments.

3.
Small ; 12(35): 4873-4880, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27439884

RESUMO

Noninvasive and nonionizing imaging of sentinel lymph nodes (SLN) is highly desirable for the detection of breast cancer metastasis through sentinel lymph node biopsy. Photoacoustic (PA) imaging is an emerging imaging technique that can serve as a suitable approach for SLN imaging. Herein, novel conjugated oligomer based nanoparticles (NPs) with strong NIR absorption, good biocompatibility, excellent PA contrast, and good photothermal conversion efficiency are reported. Real-time PA imaging of SLN reveals high resolution of the NPs via injection from the left forepaw pad. In addition, the surface functionalized NPs can target breast cancer cells and kill them efficiently and specifically through photothermal therapy upon 808 nm laser irradiation. This work shows great potential of the nanoparticle PA contrast agent to serve as a multifunctional probe for photothermal therapy at SLNs to achieve the inhibition of cancer cell metastasis in the near future.


Assuntos
Hipertermia Induzida , Nanopartículas/química , Técnicas Fotoacústicas/métodos , Fototerapia , Linfonodo Sentinela/patologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Imageamento Tridimensional , Masculino , Camundongos , Células NIH 3T3 , Nanopartículas/ultraestrutura , Ratos Wistar , Espectrofotometria Ultravioleta , Temperatura
4.
Small ; 12(47): 6576-6585, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27592863

RESUMO

Stem-cell based therapy is an emerging therapeutic approach for ischemic stroke treatment. Bone marrow stromal cells (BMSCs) are in common use as a cell source for stem cell therapy and show promising therapeutic outcomes for stroke treatment. One challenge is to develop a reliable tracking strategy to monitor the fate of BMSCs and assess their therapeutic effects in order to improve the success rate of such treatment. Herein, TPEEP, a fluorogen with aggregation-induced emission characteristics and near-infrared emission are designed and synthesized and further fabricated into organic nanoparticles (NPs). The obtained NPs show high fluorescence quantum yield, low cytotoxicity with good physical and photostability, which display excellent tracking performance of BMSCs in vitro and in vivo. Using a rat photothrombotic ischemia model as an example, the NP-labeled BMSCs are able to migrate to the stroke lesion site to yield bright red fluorescence. Immunofluorescence staining shows that the NP labeling does not affect the normal function of BMSCs, proving their good biocompatibility in vivo. These merits make TPEEP NP a potential cell tracker to evaluate the fate of BMSCs in cell therapy.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Corantes Fluorescentes/química , Nanopartículas/química , Animais , Células da Medula Óssea/metabolismo , Modelos Animais de Doenças , Corantes Fluorescentes/síntese química , Ratos
5.
Acta Oncol ; 55(4): 430-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26360921

RESUMO

INTRODUCTION: Chemotherapy-induced peripheral neuropathy (CIPN) is a major dose-limiting side effect of several chemotherapeutic agents, often leading to treatment discontinuation. Up to 20% of patients treated with weekly paclitaxel experience severe CIPN and no effective treatment has been established so far. The mechanisms of CIPN damage are unclear, but are directly dose-related. We had earlier demonstrated, in rats, the influence of hypothermia in reducing nerve blood flow. Here, we hypothesize that continuous flow limb hypothermia during chemotherapy reduces the incidence and severity of CIPN, by limiting deliverance of the neurotoxic drug to the peripheral nerves. In this study, prior to assessing the effect of hypothermia in preventing CIPN in cancer subjects undergoing paclitaxel chemotherapy, we assess the safety and tolerable temperatures for limb hypothermia in healthy human subjects. MATERIAL AND METHODS: In 15 healthy human subjects, hypothermia was administered as continuous flow cooling, unilaterally, via a thermoregulator setup covering the digits up to the elbow/knee, along with continuous skin temperature monitoring. Thermoregulator coolant temperatures between 25 °C and 20 °C were tested for tolerability, based on a carefully designed temperature regulation protocol, and maintained for three hours mimicking the duration of chemotherapy. Tolerability was evaluated using various safety and tolerability scores to monitor the subjects. RESULTS: At the end of the cooling session the healthy subjects presented without significant adverse effects, the main being brief mild skin erythema and transient numbness. Coolant temperatures as low as 22 °C were well tolerated continuously over three hours. CONCLUSION: Our results confirm the safety and tolerability of continuous flow limb hypothermia in healthy subjects. Further studies will use 22 °C thermoregulator temperature to investigate hypothermia in preventing CIPN in breast cancer patients receiving adjuvant weekly paclitaxel. This pilot study may contribute to alleviating chemotherapy dose limitation due to CIPN and increase the likelihood of success of chemotherapy.


Assuntos
Antineoplásicos/efeitos adversos , Hipotermia Induzida/métodos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/prevenção & controle , Adulto , Braço , Humanos , Perna (Membro) , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Temperatura Cutânea , Adulto Jovem
6.
Neurobiol Dis ; 75: 53-63, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25573087

RESUMO

To investigate the potential therapeutic effects of peripheral sensory stimulation during the hyperacute phase of stroke, the present study utilized electrophysiology and photoacoustic imaging techniques to evaluate neural and vascular responses of the rat cortex following ischemic insult. We employed a rat model of photothrombotic ischemia (PTI), which targeted the forelimb region of the primary somatosensory cortex (S1FL), due to its high reproducibility in creating localized ischemic injury. We also established a hybrid, dual-modality system, including six-channel electrocorticography (ECoG) and functional photoacoustic microscopy (fPAM), termed ECoG-fPAM, to image brain functional responses to peripheral sensory stimulation during the hyperacute phase of PTI. Our results showed that the evoked cerebral blood volume (CBV) and hemoglobin oxygen saturation (SO2) recovered to 84±7.4% and 79±6.2% of the baseline, respectively, when stimulation was delivered within 2.5 h following PTI induction. Moreover, neural activity significantly recovered, with 77±8.6%, 76±5.3% and 89±8.2% recovery for the resting-state inter-hemispheric coherence, alpha-to-delta ratio (ADR) and somatosensory evoked potential (SSEP), respectively. Additionally, we integrated the CBV or SO2 with ADR values as a recovery indicator (RI) to assess functional recovery after PTI. The RI indicated that 80±4.2% of neurovascular function was preserved when stimulation was delivered within 2.5h. Additionally, stimulation treatment within this optimal time window resulted in a minimal infarct volume in the ischemic hemisphere (4.6±2.1%). In contrast, the infarct volume comprised 13.7±1.7% of the ischemic hemisphere when no stimulation treatment was applied.


Assuntos
Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/terapia , Terapia por Estimulação Elétrica/métodos , Córtex Somatossensorial/fisiopatologia , Animais , Volume Sanguíneo/fisiologia , Determinação do Volume Sanguíneo , Isquemia Encefálica/patologia , Circulação Cerebrovascular/fisiologia , Modelos Animais de Doenças , Eletroencefalografia/instrumentação , Eletroencefalografia/métodos , Potenciais Somatossensoriais Evocados/fisiologia , Membro Anterior/fisiopatologia , Masculino , Microscopia Acústica/instrumentação , Microscopia Acústica/métodos , Ratos Wistar , Recuperação de Função Fisiológica/fisiologia , Córtex Somatossensorial/patologia , Fatores de Tempo
7.
Neurobiol Dis ; 82: 455-465, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26149348

RESUMO

This study developed a novel system combining a 16-channel micro-electrocorticography (µECoG) electrode array and functional photoacoustic microscopy (fPAM) to examine changes in neurovascular functions following transient ischemic attack (TIA) in rats. To mimic the pathophysiology of TIA, a modified photothrombotic ischemic model was developed by using 3 min illumination of 5 mW continuous-wave (CW) green laser light focusing on a distal branch of the middle cerebral artery (MCA). Cerebral blood volume (CBV), hemoglobin oxygen saturation (SO2), somatosensory evoked potentials (SSEPs) and alpha-to-delta ratio (ADR) were measured pre- and post-ischemia over a focal cortical region (i.e., 1.5×1.5 mm(2)). Unexpectedly, the SO2, peak-to-peak amplitude (PPA) of SSEPs and ADR recovered and achieved levels greater than the baseline values at the 4th hour post-ischemia induction without any intervention, whereas the CBV value only partially recovered. In other words, transient ischemia led to increased neural activity when the relative CBV was reduced, which may further compromise neural integrity or lead to subsequent vascular disease. This novel µECoG-fPAM system complements currently available imaging techniques and represents a promising technology for studying neurovascular coupling in animal models.


Assuntos
Córtex Cerebral/fisiopatologia , Circulação Cerebrovascular/fisiologia , Eletrocorticografia/métodos , Ataque Isquêmico Transitório/fisiopatologia , Microscopia Acústica/métodos , Técnicas Fotoacústicas/métodos , Ritmo alfa , Animais , Volume Sanguíneo , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/patologia , Ritmo Delta , Modelos Animais de Doenças , Estimulação Elétrica , Eletrocorticografia/instrumentação , Eletrodos Implantados , Desenho de Equipamento , Potenciais Somatossensoriais Evocados , Ataque Isquêmico Transitório/patologia , Lasers , Masculino , Microscopia Acústica/instrumentação , Artéria Cerebral Média , Técnicas Fotoacústicas/instrumentação , Ratos Sprague-Dawley , Fatores de Tempo
8.
Small ; 11(13): 1603-10, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25367500

RESUMO

Conjugated polymers (CPs) with strong near-infrared (NIR) absorption and high heat conversion efficiency have emerged as a new generation of photothermal therapy (PTT) agents for cancer therapy. An efficient strategy to design NIR absorbing CPs with good water dispersibility is essential to achieve excellent therapeutic effect. In this work, poly[9,9-bis(4-(2-ethylhexyl)phenyl)fluorene-alt-co-6,7-bis(4-(hexyloxy)phenyl)-4,9-di(thiophen-2-yl)-thiadiazoloquinoxaline] (PFTTQ) is synthesized through the combination of donor-acceptor moieties by Suzuki polymerization. PFTTQ nanoparticles (NPs) are fabricated through a precipitation approach using 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000 ) as the encapsulation matrix. Due to the large NIR absorption coefficient (3.6 L g(-1) cm(-1) ), the temperature of PFTTQ NP suspension (0.5 mg/mL) could be rapidly increased to more than 50 °C upon continuous 808 nm laser irradiation (0.75 W/cm(2) ) for 5 min. The PFTTQ NPs show good biocompatibility to both MDA-MB-231 cells and Hela cells at 400 µg/mL of NPs, while upon laser irradiation, effective cancer cell killing is observed at a NP concentration of 50 µg/mL. Moreover, PFTTQ NPs could efficiently ablate tumor in in vivo study using a Hela tumor mouse model. Considering the large amount of NIR absorbing CPs available, the general encapsulation strategy will enable the development of more efficient PTT agents for cancer or tumor therapy.


Assuntos
Materiais Biocompatíveis , Nanopartículas/uso terapêutico , Fototerapia , Polímeros/uso terapêutico , Células HeLa , Humanos , Espectrofotometria Ultravioleta
9.
J Nanosci Nanotechnol ; 15(2): 1864-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26353745

RESUMO

Exogenous contrast agents with high sensitivity are highly desirable for photoacoustic (PA) imaging. In this work, we show that fluorogens with aggregation induced emission (AIE) characteristics are born with strong PA signals. In addition, we find that the PA signal of conventional fluorophores could be significantly enhanced through conjugation with tetraphenylethene (TPE), an iconic AIE fluorogen. Taking 2,3-bis[4-(diphenylamino)phenyl]fumaronitrile (TPAFN) as an example, conjugation between TPAFN and TPE affords 2,3-bis(4-(phenyl(4-(1,2,2-triphenylvinyl)phenyl)amino)phenyl) fumaroni-trile (TPETPAFN), a molecule with significant AIE characteristics, which shows 170% higher PA signals as compared to that of TPAFN. The higher PA signal of TPETPAFN is mainly ascribed to the enhanced molecular rotation, which is beneficial to its thermal expansion upon light absorption. Moreover, the significantly reduced PA signals for TPETPAFN in solvents with high viscosity or as nanoparticles further highlight the contribution of molecular rotation on PA signals.


Assuntos
Meios de Contraste/síntese química , Corantes Fluorescentes/química , Aumento da Imagem/métodos , Microscopia Acústica/métodos , Técnicas Fotoacústicas/métodos , Teste de Materiais , Microscopia Acústica/instrumentação , Imagens de Fantasmas , Técnicas Fotoacústicas/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
J Nanosci Nanotechnol ; 14(7): 4733-44, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24757943

RESUMO

Voltage-sensitive dye imaging (VSDi) enables visualization of information processing in different areas of the brain with reasonable spatial and temporal resolution. VSDi employs different chemical compounds to transduce neural activity directly into the changes in intrinsic optical signal. Physically, voltage-sensitive dyes (VSDs) are chemical probes that reside in the neural membrane and change their fluorescence or absorbance in response to membrane potential changes. Based on these features, VSDs can be divided into two groups-absorbance and fluorescence. The spatial and temporal resolution of the VSDi is limited mainly by the technical characteristics of the optical imaging setup (e.g., computer and light-sensitive device-charge-coupled device (CCD) camera or photodiode array). In this article, we briefly review the development of the VSD, technique of VSDi and applications in functional brain imaging.


Assuntos
Potenciais de Ação/fisiologia , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Neurônios/fisiologia , Fotometria/métodos , Espectrometria de Fluorescência/métodos , Imagens com Corantes Sensíveis à Voltagem/métodos , Animais , Humanos , Neurociências/métodos
11.
iScience ; 27(6): 110108, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38952685

RESUMO

To study neurovascular function in type 2 diabetes mellitus (T2DM), we established a high-fat diet/streptozotocin (HFD/STZ) rat model. Electrocorticography-laser speckle contrast imaging (ECoG-LSCI) revealed that the somatosensory-evoked potential (SSEP) amplitude and blood perfusion volume were significantly lower in the HFD/STZ group. Cortical spreading depression (CSD) velocity was used as a measure of neurovascular function, and the results showed that the blood flow velocity and the number of CSD events were significantly lower in the HFD/STZ group. In addition, to compare changes during acute hyperglycemia and hyperglycemia, we used intraperitoneal injection (IPI) of glucose to induce transient hyperglycemia. The results showed that CSD velocity and blood flow were significantly reduced in the IPI group. The significant neurovascular changes observed in the brains of rats in the HFD/STZ group suggest that changes in neuronal apoptosis may play a role in altered glucose homeostasis in T2DM.

12.
APL Bioeng ; 8(1): 016105, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38292062

RESUMO

Wound monitoring is crucial for effective healing, as nonhealing wounds can lead to tissue ulceration and necrosis. Evaluating wound recovery involves observing changes in angiogenesis. Laser speckle contrast imaging (LSCI) is vital for wound assessment due to its rapid imaging, high resolution, wide coverage, and noncontact properties. When using LSCI equipment, regions of interest (ROIs) must be delineated in lesion areas in images for quantitative analysis. However, patients with serious wounds cannot maintain constant postures because the affected areas are often associated with discomfort and pain. This leads to deviations between the drawn ROI and actual wound position when using LSCI for wound assessment, affecting the reliability of relevant assessments. To address these issues, we used the channel and spatial reliability tracker object tracking algorithm to develop an automatic ROI tracking function for LSCI systems. This algorithm is used to track and correct artificial movements in blood flow images, address the ROI position offset caused by the movement of the affected body part, increase the blood flow analysis accuracy, and improve the clinical applicability of LSCI systems. ROI tracking experiments were performed by simulating wounds, and the results showed that the intraclass correlation coefficient (ICC) ranged from 0.134 to 0.976. Furthermore, the object within the ROI affected tracking performance. Clinical assessments across wound types showed ICCs ranging from 0.798 to 0.917 for acute wounds and 0.628-0.849 for chronic wounds. We also discuss factors affecting tracking performance and propose strategies to enhance implementation effectiveness.

13.
iScience ; 27(6): 110033, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38947531

RESUMO

Ischemic stroke can cause depolarized brain waves, termed peri-infarct depolarization (PID). Here, we evaluated whether topiramate, a neuroprotective drug used to treat epilepsy and alleviate migraine, has the potential to reduce PID. We employed a rat model of photothrombotic ischemia that can reliably and reproducibly induce PID and developed a combined electrocorticography-laser speckle contrast imaging (ECoG-LSCI) platform to monitor neuronal activity and cerebral blood flow (CBF) simultaneously. Topiramate administration after photothrombotic ischemia did not rescue CBF but significantly restored somatosensory evoked potentials in the forelimb area of the primary somatosensory cortex. Moreover, infarct volume was investigated by 2,3,5-triphenyltetrazolium chloride (TTC) staining, and neuronal survival was evaluated by Nissl staining. Mechanistically, the levels of inflammatory markers, such as ED1 (CD68), Iba-1, and GFAP, decreased significantly after topiramate administration, as did BDNF expression, while the expression of NeuN and Bcl-2/Bax increased, which is indicative of reduced inflammation and improved neuroprotection.

14.
Biomed Eng Online ; 12: 120, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24245952

RESUMO

BACKGROUND: Vascular hemodynamics is central to the regulation of neuro-metabolism and plays important roles in peripheral nerves diseases and their prevention. However, at present there are only a few techniques capable of directly measuring peripheral nerve vascular hemodynamics. METHOD: Here, we investigate the use of dark-field functional photoacoustic microscopy (fPAM) for intrinsic visualizing of the relative hemodynamics of the rat sciatic nerve in response to localized temperature modulation (i.e., cooling and rewarming). RESULTS AND CONCLUSION: Our main results show that the relative functional total hemoglobin concentration (HbT) is more significantly correlated with localized temperature changes than the hemoglobin oxygen saturation (SO2) changes in the sciatic nerve. Our study also indicates that the relative HbT changes are better markers of neuronal activation than SO2 during nerve temperature changes. Our results show that fPAM is a promising candidate for in vivo imaging of peripheral nerve hemodynamics without the use of contrast agents. Additionally, this technique may shed light on the neuroprotective effect of hypothermia on peripheral nerves by visualizing their intrinsic hemodynamics.


Assuntos
Hemodinâmica , Microscopia Confocal/métodos , Técnicas Fotoacústicas/métodos , Nervo Isquiático/fisiologia , Temperatura , Animais , Regulação da Temperatura Corporal/fisiologia , Feminino , Hemoglobinas/metabolismo , Oxigênio/metabolismo , Ratos , Ratos Wistar , Nervo Isquiático/metabolismo
15.
Biomed Eng Online ; 12: 38, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23631798

RESUMO

Optical imaging techniques reflect different biochemical processes in the brain, which is closely related with neural activity. Scientists and clinicians employ a variety of optical imaging technologies to visualize and study the relationship between neurons, glial cells and blood vessels. In this paper, we present an overview of the current optical approaches used for the in vivo imaging of neurovascular coupling events in small animal models. These techniques include 2-photon microscopy, laser speckle contrast imaging (LSCI), voltage-sensitive dye imaging (VSDi), functional photoacoustic microscopy (fPAM), functional near-infrared spectroscopy imaging (fNIRS) and multimodal imaging techniques. The basic principles of each technique are described in detail, followed by examples of current applications from cutting-edge studies of cerebral neurovascular coupling functions and metabolic. Moreover, we provide a glimpse of the possible ways in which these techniques might be translated to human studies for clinical investigations of pathophysiology and disease. In vivo optical imaging techniques continue to expand and evolve, allowing us to discover fundamental basis of neurovascular coupling roles in cerebral physiology and pathophysiology.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/irrigação sanguínea , Encéfalo/fisiologia , Imagem Óptica/métodos , Animais , Humanos , Imagem Multimodal , Pesquisa Translacional Biomédica
16.
APL Bioeng ; 7(3): 036119, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37781728

RESUMO

Clinical and preclinical studies on epileptic seizures are closely linked to the study of neurovascular coupling. Obtaining reliable information about cerebral blood flow (CBF) in the area of epileptic activity through minimally invasive techniques is crucial for research in this field. In our studies, we used laser speckle contrast imaging (LSCI) to gather information about the local blood circulation in the area of epileptic activity. We used two models of epileptic seizures: one based on 4-aminopyridine (4-AP) and another based on pentylenetetrazole (PTZ). We verified the duration of an epileptic seizure using electrocorticography (ECoG). We applied the antiepileptic drug topiramate (TPM) to both models, but its effect was different in each case. However, in both models, TPM had an effect on neurovascular coupling in the area of epileptic activity, as shown by both LSCI and ECoG data. We demonstrated that TPM significantly reduced the amplitude of 4-AP-induced epileptic seizures (4-AP+TPM: 0.61 ± 0.13 mV vs 4-AP: 1.08 ± 0.19 mV; p < 0.05), and it also reduced gamma power in ECoG in PTZ-induced epileptic seizures (PTZ+TPM: 38.5% ± 11.9% of the peak value vs PTZ: 59.2% ± 3.0% of peak value; p < 0.05). We also captured the pattern of CBF changes during focal epileptic seizures induced by 4-AP. Our data confirm that the system of simultaneous cortical LSCI and registration of ECoG makes it possible to evaluate the effectiveness of pharmacological agents in various types of epileptic seizures in in vivo models and provides spatial and temporal information on the process of ictogenesis.

17.
Med Biol Eng Comput ; 61(11): 2797-2814, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37558927

RESUMO

Zebrafish have become a widely accepted model organism for biomedical research due to their strong cortisol stress response, behavioral strain differences, and sensitivity to both drug treatments and predators. However, experimental zebrafish studies generate substantial data that must be analyzed through objective, accurate, and repeatable analysis methods. Recently, advancements in artificial intelligence (AI) have enabled automated tracking, image recognition, and data analysis, leading to more efficient and insightful investigations. In this review, we examine key AI applications in zebrafish research, including behavior analysis, genomics, and neuroscience. With the development of deep learning technology, AI algorithms have been used to precisely analyze and identify images of zebrafish, enabling automated testing and analysis. By applying AI algorithms in genomics research, researchers have elucidated the relationship between genes and biology, providing a better basis for the development of disease treatments and gene therapies. Additionally, the development of more effective neuroscience tools could help researchers better understand the complex neural networks in the zebrafish brain. In the future, further advancements in AI technology are expected to enable more extensive and in-depth medical research applications in zebrafish, improving our understanding of this important animal model. This review highlights the potential of AI technology in achieving the full potential of zebrafish research by enabling researchers to efficiently track, process, and visualize the outcomes of their experiments.


Assuntos
Inteligência Artificial , Aprendizado Profundo , Animais , Peixe-Zebra , Algoritmos , Redes Neurais de Computação
18.
IEEE Trans Ultrason Ferroelectr Freq Control ; 70(12): 1682-1690, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37216240

RESUMO

Sonodynamic therapy (SDT) is a promising approach for cancer treatment that uses sonosensitizers (SNSs) to generate reactive oxygen species (ROS) in the presence of ultrasound (US). However, SDT is oxygen-dependent and requires an imaging tool to monitor the tumor microenvironment and guide treatment. Photoacoustic imaging (PAI) is a noninvasive and powerful imaging tool that offers high spatial resolution and deep tissue penetration. PAI can quantitatively assess tumor oxygen saturation (sO2) and guide SDT by monitoring time-dependent sO2 changes in the tumor microenvironment. Here, we discuss recent advances in PAI-guided SDT for cancer therapy. We discuss various exogenous contrast agents and nanomaterial-based SNSs developed for PAI-guided SDT. Additionally, combining SDT with other therapies, including photothermal (PTT) therapy, can enhance its therapeutic effect. However, the application of nanomaterial-based contrast agents in PAI-guided SDT for cancer therapy remains challenging due to the lack of simple designs, the need for extensive pharmacokinetic studies, and high production costs. Integrated efforts from researchers, clinicians, and industry consortia are necessary for the successful clinical translation of these agents and SDT for personalized cancer therapy. PAI-guided SDT shows the potential to revolutionize cancer therapy and improve patient outcomes, but further research is necessary to realize its full potential.


Assuntos
Neoplasias , Técnicas Fotoacústicas , Terapia por Ultrassom , Humanos , Meios de Contraste , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Espécies Reativas de Oxigênio , Linhagem Celular Tumoral , Microambiente Tumoral
19.
Biosensors (Basel) ; 13(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36671941

RESUMO

In photoacoustic (PA) imaging, tissue absorbs specific wavelengths of light. The absorbed energy results in thermal expansion that generates ultrasound waves that are reconstructed into images. Existing commercial PA imaging systems for preclinical brain imaging are limited by imprecise positioning capabilities and inflexible user interfaces. We introduce a new visible charge-coupled device (CCD) camera-guided photoacoustic imaging (ViCPAI) system that integrates an ultrasound (US) transducer and a data acquisition platform with a CCD camera for positioning. The CCD camera accurately positions the US probe at the measurement location. The programmable MATLAB-based platform has an intuitive user interface. In vitro carbon fiber and in vivo animal experiments were performed to investigate the precise positioning and imaging capabilities of the ViCPAI system. We demonstrated real-time capturing of bilateral cerebral hemodynamic changes during (1) forelimb electrical stimulation under normal conditions, (2) forelimb stimulation after right brain focal photothrombotic ischemia (PTI) stroke, and (3) progression of KCl-induced cortical spreading depression (CSD). The ViCPAI system accurately located target areas and achieved reproducible positioning, which is crucial in animal and clinical experiments. In animal experiments, the ViCPAI system was used to investigate bilateral cerebral cortex responses to left forelimb electrical stimulation before and after stroke, showing that the CBV and SO2 in the right primary somatosensory cortex of the forelimb (S1FL) region were significantly changed by left forelimb electrical stimulation before stroke. No CBV or SO2 changes were observed in the bilateral cortex in the S1FL area in response to left forelimb electrical stimulation after stroke. While monitoring CSD progression, the ViCPAI system accurately locates the S1FL area and returns to the same position after the probe moves, demonstrating reproducible positioning and reducing positioning errors. The ViCPAI system utilizes the real-time precise positioning capability of CCD cameras to overcome various challenges in preclinical and clinical studies.


Assuntos
Técnicas Fotoacústicas , Acidente Vascular Cerebral , Ratos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Córtex Cerebral/fisiologia , Neuroimagem
20.
Front Public Health ; 11: 1188304, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397724

RESUMO

The COVID-19 pandemic brought the world to a standstill, posing unprecedented challenges for healthcare systems worldwide. The overwhelming number of patients infected with the virus placed an enormous burden on healthcare providers, who struggled to cope with the sheer volume of cases. Furthermore, the lack of effective treatments or vaccines means that quarantining has become a necessary measure to slow the spread of the virus. However, quarantining places a significant burden on healthcare providers, who often lack the resources to monitor patients with mild symptoms or asymptomatic patients. In this study, we propose an Internet of Things (IoT)-based wearable health monitoring system that can remotely monitor the exact locations and physiological parameters of quarantined individuals in real time. The system utilizes a combination of highly miniaturized optoelectronic and electronic technologies, an anti-epidemic watch, a mini-computer, and a monitor terminal to provide real-time updates on physiological parameters. Body temperature, peripheral oxygen saturation (SpO2), and heart rate are recorded as the most important measurements for critical care. If these three physiological parameters are aberrant, then it could represent a life-endangering situation and/or a short period over which irreversible damage may occur. Therefore, these parameters are automatically uploaded to a cloud database for remote monitoring by healthcare providers. The monitor terminal can display real-time health data for multiple patients and provide early warning functions for medical staff. The system significantly reduces the burden on healthcare providers, as it eliminates the need for manual monitoring of patients in quarantine. Moreover, it can help healthcare providers manage the COVID-19 pandemic more effectively by identifying patients who require medical attention in real time. We have validated the system and demonstrated that it is well suited to practical application, making it a promising solution for managing future pandemics. In summary, our IoT-based wearable health monitoring system has the potential to revolutionize healthcare by providing a cost-effective, remote monitoring solution for patients in quarantine. By allowing healthcare providers to monitor patients remotely in real time, the burden on medical resources is reduced, and more efficient use of limited resources is achieved. Furthermore, the system can be easily scaled to manage future pandemics, making it an ideal solution for managing the health challenges of the future.


Assuntos
COVID-19 , Internet das Coisas , Dispositivos Eletrônicos Vestíveis , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/prevenção & controle , Pandemias/prevenção & controle , Monitorização Fisiológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA