Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 22(11): 4368-4375, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35621708

RESUMO

To date, the reckless use of deadly chemical warfare agents (CWAs) has posed serious risks to humanity, property, and ecological environment. Therefore, necessary materials able to rapidly adsorb and securely decompose these hazardous toxics are in urgent demand. Herein, three-dimensional (3D) reduced graphene oxide/Zr-doped TiO2 nanofibrous aerogels (RGO/ZT NAs) are synthesized by feasibly combining sol-gel electrospinning technology and a unidirectional freeze-drying approach. Benefiting from the synergetic coassembly of flexible ZT nanofibers and pliable RGO nanosheets, the hierarchically entangled fibrous frameworks feature ultralow density, superior elasticity, and robust fatigue resistance over 106 compressive cycles. In particular, the RGO incorporation is attributed to the achieved increased surface area, stronger light absorption, and decreased recombination of charge-carriers for photocatalysis. The highly porous 3D RGO/ZT NAs deliver enhanced photothermal catalytic activity for CWA degradation as well as excellent recyclability and good photostability. This work opens fresh horizons for developing advanced 3D aerogel-based photocatalysts in a controlled fashion.


Assuntos
Substâncias para a Guerra Química , Grafite , Nanofibras , Substâncias para a Guerra Química/análise , Substâncias para a Guerra Química/química , Grafite/química , Nanofibras/química , Titânio
2.
PLoS Pathog ; 16(8): e1008705, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32853291

RESUMO

The recent outbreak of human infections caused by SARS-CoV-2, the third zoonotic coronavirus has raised great public health concern globally. Rapid and accurate diagnosis of this novel pathogen posts great challenges not only clinically but also technologically. Metagenomic next-generation sequencing (mNGS) and reverse-transcription PCR (RT-PCR) have been the most commonly used molecular methodologies. However, each has their own limitations. In this study, we developed an isothermal, CRISPR-based diagnostic for COVID-19 with near single-copy sensitivity. The diagnostic performances of all three technology platforms were also compared. Our study aimed to provide more insights into the molecular detection of SARS-CoV-2, and also to present a novel diagnostic option for this new emerging virus.


Assuntos
Betacoronavirus/genética , Sistemas CRISPR-Cas/genética , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/genética , Pneumonia Viral/diagnóstico , Pneumonia Viral/genética , Bactérias/genética , COVID-19 , Teste para COVID-19 , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genes Virais/genética , Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Técnicas de Diagnóstico Molecular/economia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/economia , Técnicas de Amplificação de Ácido Nucleico/métodos , Pandemias , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2 , Sensibilidade e Especificidade
3.
Nano Lett ; 21(20): 8839-8847, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34617763

RESUMO

Chemical warfare agents (CWAs) pose huge threats to ecological environments, agriculture, and human health due to the turbulent international situation in contemporary society. Zirconium hydroxide (Zr(OH)4) has captured the prime focus as an effective candidate for CWA decomposition but is often hindered by the isolated powder form. Here, we demonstrate a scalable three-dimensional space-confined synthetic strategy to fabricate nanoflake-engineered zirconic fibrous aerogels (NZFAs). Our strategy enables the stereoscopic Zr(OH)4 nanoflakes vertically and evenly in situ grown on the interconnected fibrous framework, remarkably enlarging the surface area and providing rich active sites for CWA catalysis. The as-synthesized NZFAs exhibit intriguing properties of ultralow density (>0.37 mg cm-3), shape-memory behavior under 90% strain, and robust fatigue resistance over 106 compression cycles at 40% strain. Meanwhile, the high air permeability, prominent adsorptivity, and reusability make them state-of-the-art chemical protective materials. This work may provide an avenue for developing next-generation aerogel-based catalysts and beyond.


Assuntos
Substâncias para a Guerra Química , Agentes Neurotóxicos , Adsorção , Catálise , Substâncias para a Guerra Química/análise , Humanos
4.
Small ; 17(33): e2101639, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34258857

RESUMO

Organophosphorus-based chemical warfare agents (CWAs) are highly poisonous, and recent attacks using nerve agents have stimulated researchers to develop breakthrough materials for their fast degradation. Zr-based materials have been identified as the most effective catalysts for breaking down CWAs, but in their powdered form, their practical application in personal protective equipment is limited. Herein, a surface-confined strategy for the direct growth of vertically aligned zirconium hydroxide (Zr(OH)4 ) nanosheets with ultrathin and tortuous structures on nanofibers is reported. The freestanding Zr(OH)4 nanosheet-assembled nanofibrous membranes (NANMs) show superior catalytic performance to degrade dimethyl methylphosphonate, a nerve agent simulant, with a half-life of 4 min. In addition, intriguing membrane-type NANMs feature integrated properties of exceptional breathability, prominent flexibility, and robust fatigue resistance over one million buckling loads. This facile strategy provides a novel route to manufacture new classes of nanosheet-supported membranes for chemical-protective materials, in particular for gas filters, protective suits, and clothing.


Assuntos
Substâncias para a Guerra Química , Nanofibras , Substâncias para a Guerra Química/análise , Hidróxidos , Zircônio
5.
Adv Mater ; 36(25): e2313720, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489784

RESUMO

The unsatisfactory properties of ceramic aerogels when subjected to thermal shock, such as strength degradation and structural collapse, render them unsuitable for use at large thermal gradients or prolonged exposure to extreme temperatures. Here, a building-envelope-inspired design for fabricating a thermomechanically robust all-fiber ceramic meta-aerogel with interlocked fibrous interfaces and an interwoven cellular structure in the orthogonal directions is presented, which is achieved through a two-stage physical and chemical process. Inspired by the reinforced concrete building envelope, a solid foundation composed of fibrous frames is constructed and enhanced through supramolecular in situ self-assembly to achieve high compressibility, retaining over 90% of maximum stress under a considerable compressive strain of 50% for 10 000 cycles, and showing temperature-invariance when compressed at 60% strain within the range of -100 to 500 °C. As a result of its distinct response to oscillation tolerance coupled with elastic recovery, the all-fiber ceramic meta-aerogel exhibits exceptional suitability for thermal shock resistance and infrared camouflage performance in cold (-196 °C) and hot (1300 °C) fields. This study provides an opportunity for developing ceramic aerogels for effective thermal management under extreme conditions.

6.
Anal Chem ; 85(2): 1223-30, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23256523

RESUMO

Sensitive, rapid, and reliable detection of bacteria has always been pursued due to the great threat of the bacteria to human health. In this study, a convenient one-step strategy for detecting Salmonella typhimurium was developed. Immunomagnetic nanospheres (IMNS) and immunofluorescent nanospheres (IFNS) were used to specifically capture and recognize S. typhimurium simultaneously. After magnetic separation, the sandwich immune complexes (IMNS-bacteria-IFNS) were detected under a fluorescence microscope with a detection limit as low as ca. 10 CFU/mL. When they were detected by fluorescence spectrometer, a linear range was exhibited at the concentration from 10(5) to 10(7) CFU/mL with R(2) = 0.9994. Compared with the two-step detection strategy, in which the bacteria were first captured with the IMNS and subsequently identified with the IFNS, this one-step strategy simplified the detection process and improved the sensitivity. Escherichia coli and Shigella flexneri both showed negative results with this method, indicating that this method had excellent selectivity and specificity. Moreover, this method had strong anti-interference ability, and it had been successfully used to detect S. typhimurium in synthetic samples (milk, fetal bovine serum, and urine), showing the potential application in practice.


Assuntos
Fluorescência , Nanopartículas de Magnetita/química , Nanosferas/química , Salmonella typhimurium/isolamento & purificação , Tamanho da Partícula , Salmonella typhimurium/imunologia , Espectrometria de Fluorescência , Propriedades de Superfície
7.
Adv Mater ; 35(32): e2304401, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37335805

RESUMO

Traditional oxide ceramics are inherently brittle and highly sensitive to defects, making them vulnerable to failure under external stress. As such, endowing these materials with high strength and high toughness simultaneously is crucial to improve their performance in most safety-critical applications. Fibrillation of the ceramic materials and further refinement of the fiber diameter, as realized by electrospinning, are expected to achieve the transformation from brittleness to flexibility owing to the structural uniqueness. Currently, the synthesis of electrospun oxide ceramic nanofibers must rely on an organic polymer template to regulate the spinnability of the inorganic sol, whose thermal decomposition during ceramization will inevitably lead to pore defects, and seriously weaken the mechanical properties of the final nanofibers. Here, a self-templated electrospinning strategy is proposed for the formation of oxide ceramic nanofibers without adding any organic polymer template. An example is given to show that individual silica nanofibers have an ideally homogeneous, dense, and defect-free structure, with tensile strength as high as 1.41 GPa and toughness up to 34.29 MJ m-3 , both of which are far superior to the counterparts prepared by polymer-templated electrospinning. This work provides a new strategy to develop oxide ceramic materials that are strong and tough.

8.
Front Microbiol ; 14: 1101357, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970678

RESUMO

Shigella and enterotoxigenic Escherichia coli (ETEC) are major bacterial pathogens of diarrheal disease that is the second leading cause of childhood mortality globally. Currently, it is well known that Shigella spp., and E. coli are very closely related with many common characteristics. Evolutionarily speaking, Shigella spp., are positioned within the phylogenetic tree of E. coli. Therefore, discrimination of Shigella spp., from E. coli is very difficult. Many methods have been developed with the aim of differentiating the two species, which include but not limited to biochemical tests, nucleic acids amplification, and mass spectrometry, etc. However, these methods suffer from high false positive rates and complicated operation procedures, which requires the development of novel methods for accurate and rapid identification of Shigella spp., and E. coli. As a low-cost and non-invasive method, surface enhanced Raman spectroscopy (SERS) is currently under intensive study for its diagnostic potential in bacterial pathogens, which is worthy of further investigation for its application in bacterial discrimination. In this study, we focused on clinically isolated E. coli strains and Shigella species (spp.), that is, S. dysenteriae, S. boydii, S. flexneri, and S. sonnei, based on which SERS spectra were generated and characteristic peaks for Shigella spp., and E. coli were identified, revealing unique molecular components in the two bacterial groups. Further comparative analysis of machine learning algorithms showed that, the Convolutional Neural Network (CNN) achieved the best performance and robustness in bacterial discrimination capacity when compared with Random Forest (RF) and Support Vector Machine (SVM) algorithms. Taken together, this study confirmed that SERS paired with machine learning could achieve high accuracy in discriminating Shigella spp., from E. coli, which facilitated its application potential for diarrheal prevention and control in clinical settings. Graphical abstract.

9.
Cell Immunol ; 272(2): 251-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22055202

RESUMO

TREM-1 is a recently discovered receptor expressed on neutrophils and macrophages. Blocking of TREM-1 signaling improves the survival of mice with bacterial sepsis. However, the precise mechanism by which TREM-1 modulates the inflammatory responses is poorly defined. In this study, we investigated the role of TREM-1 in Pseudomonas aeruginosa-induced peritonitis. Our results showed that TREM-1 was not expressed on lymphocytes but emerged on the cell surface of neutrophils and peritoneal macrophages. Blockade of TREM-1 signaling significantly prolonged survival of mice with P. aeruginosa-induced peritonitis. However, blocking TREM-1 signaling had no effect on macrophage phagocytosis in vitro. Interestingly, the expression of the costimulatory molecules CD40 and CD86 on macrophages was significantly decreased after blocking TREM-1 signaling. Furthermore, interfering with TREM-1 engagement led to significant reduction of pro-inflammatory mediators such as IL-1, TNF-α, MCP-1 and IFN-γ. Therefore, our results showed that TREM-1 could be a potential therapeutic target for bacterial sepsis.


Assuntos
Bacteriemia/metabolismo , Mediadores da Inflamação/metabolismo , Glicoproteínas de Membrana/antagonistas & inibidores , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/isolamento & purificação , Receptores Imunológicos/antagonistas & inibidores , Animais , Antígeno B7-2/genética , Bacteriemia/genética , Bacteriemia/microbiologia , Plaquetas/metabolismo , Antígenos CD40/genética , Quimiocina CCL2/metabolismo , Interferon gama/metabolismo , Interleucina-1beta/metabolismo , Leucócitos/metabolismo , Linfócitos/metabolismo , Macrófagos Peritoneais/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/metabolismo , Peritonite/genética , Peritonite/metabolismo , Fagocitose , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/terapia , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Transdução de Sinais , Receptor Gatilho 1 Expresso em Células Mieloides , Fator de Necrose Tumoral alfa/metabolismo
10.
J Colloid Interface Sci ; 611: 1-8, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34923292

RESUMO

Copper hydroxide (Cu(OH)2) has been elected as a newly-emerging green disinfectant to deal with membrane biofouling in the treatment of bacteria-contaminated water; however, the decoration strategy of it with the granular form on membrane substrates limits the practical application. Here a novel surface-confined methodology was proposed for preparing freestanding Cu(OH)2 nanosheet-assembled nanofibrous membranes (CNNMs) with the anti-biofouling property via the in-suit coprecipitation and heat-induced growth method. The vertically aligned Cu(OH)2 nanosheets were in-suit rooted on the surface of the nanofiber scaffold with high binding fastness. The acquired CNNMs possess comprehensive performances of high porosity, prominent mechanical strength, fatigue resistance, and superior bactericidal efficiency of 99.999%, which endowed the CNNMs ultrahigh filtration fluxes (24000 L m-2 h-1) and durability to disinfect bacteria-containing water effectively. This facile strategy may throw light on manufacturing novel inorganic nanosheet-rooted nanofibrous membranes for water disinfection and public health.


Assuntos
Incrustação Biológica , Nanofibras , Incrustação Biológica/prevenção & controle , Cobre , Desinfecção , Hidróxidos , Membranas Artificiais , Água
11.
Cell Immunol ; 269(1): 22-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21453908

RESUMO

T cell immunoglobulin and mucin domain (Tim)-3 is expressed on activated CD4(+) and CD8(+) T cells. Identification of galectin-9 as a ligand for Tim-3 has now firmly established the Tim-3/galectin-9 pathway, which results in apoptosis of effector CD4(+) and CD8(+) T cells. Moreover, Th17 cells are a recently discovered CD4(+) effector T cell, which are important in antimicrobial immunity. Whether the Tim-3/galectin-9 pathway affects Th17 immunity has not been elucidated. Here, we demonstrated expression of Tim-3 on Th17 cells by flow cytometry. Th17-skewed cells were sensitive to galectin-9-induced apoptosis. In vitro administration of galectin-9 decreased stimulated Th17 cells and inhibited production of IL-17. Interestingly, Klebsiella pneumoniae (K. pneumoniae) infection led to enhanced IL-17 levels. Recombinant galectin-9 significantly decreased IL-17 in vivo, which resulted in reduced bacterial clearance and high mortality. These observations suggest that the Tim-3/galectin-9 pathway plays an important role in termination of Th17-immune responses, and could be a therapeutic target for inflammatory diseases.


Assuntos
Galectinas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-17/metabolismo , Infecções por Klebsiella/fisiopatologia , Células Th17/efeitos dos fármacos , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Animais , Apoptose , Diferenciação Celular , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/mortalidade , Klebsiella pneumoniae , Ligantes , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sobrevida , Células Th17/citologia , Células Th17/imunologia , Fatores de Tempo
12.
Front Microbiol ; 12: 702941, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659140

RESUMO

Objectives: This study aimed to explore changes in carbapenem-resistant Klebsiella pneumoniae (CR-KP) isolates collected in Guangdong over the period of 2016-2020. Methods: Antibacterial susceptibility was quantified through VITEK 2 compact and K-B method. Carbapenemase phenotypes and genotypes were characterized by modified carbapenem inactivation method (mCIM), EDTA-carbapenem inactivation method (eCIM), and polymerase chain reaction (PCR). Molecular characteristics and evolutionary trends were analyzed by multilocus sequence typing and evolutionary tree. Results: Isolates (2,847) of K. pneumoniae were separated in 2016-2020, and the separate rate of CR-KP increased from 5.65 to 9.90% (p = 0.009). The top 3 wards were intensive care unit (ICU) (21.92%), neonatal wards (13.70%), and respiratory wards (12.33%). In 146 CR-KP strains, serine carbapenemase was the main phenotype, and KPC was the main genotype, and 57 contained two resistant genes, and 1 contained three resistant genes. Two polygenic strains were first found: IMP + GES and KPC + NDM + VIM, but all the phenotypes were metalloenzyme, which indicated that metalloenzyme was usually the first choice for CR-KP resistance. In addition, all the ST54 of metalloenzyme type contained IMP, and all the ST45, ST37, and ST76 contained OXA. ST11 was the most prevalent (42.47%); ST11 and its mutants proved the predominant sequence type making up 51.1% of the carbapenemase-producing isolates. A novel type of ST11 mutation, the rpoB was mutated from sequence 1 to sequence 146, was in an independent separate branch on the evolutionary tree and was resistant to all antibacterial agents. The other three mutants, rpoB 1-15, infB 3-148, and infB 3-80, are also resistant to all antibacteria. Of note, all the four mutants produced serine carbapenemase and contained KPC, and indicated that the prevalent strain in China, ST11, has serious consequences and potential outbreaks. Conclusion: The infection rate of CR-KP has increased, and ICU and neonatal wards have become the key infection areas. Producing serine enzyme, the KPC genotype, and ST11 are the predominant CR-KP. Polygenic strains and ST11 mutation made clinical treatment difficult and may become a potential threat.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA