Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36677887

RESUMO

In the present study, we have produced a sodium carboxymethylcellulose (CMC) hydrogel from a bacterial cellulose etherification reaction with chloroacetic acid in an alkaline medium. Bacterial cellulose (BC) was synthesized via economical and environmentally friendly methods using the Gluconacetobacter xylinus bacterium. After purification, freeze-drying, and milling, BC microparticles were dispersed in NaOH solution for different time periods before the etherification reaction. This has allowed the understanding of the alkalinization effect on BC modification. All synthesized CMC were soluble in water, and FTIR and XRD analyses confirmed the etherification reaction. The bath of BC in NaOH solution affects both molecular weight and degree of substitution. SEM analysis revealed the change of BC microstructure from fibrous-like to a smooth, uniform structure. The CMC-0 h allowed the production of crosslinked hydrogel after dehydrothermal treatment. Such hydrogel has been characterized rheologically and has shown a water absorption of 35 times its original weight. The optimization of the CMC produced from BC could pave the way for the production of ultrapure hydrogel to be applied in the healthcare and pharmaceutical industry.


Assuntos
Carboximetilcelulose Sódica , Hidrogéis , Carboximetilcelulose Sódica/química , Celulose/química , Hidróxido de Sódio , Água
2.
Sensors (Basel) ; 20(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878206

RESUMO

A bio-derived power harvester from mechanical vibrations is here proposed. The harvester aims at using greener fabrication technologies and reducing the dependence from carbon-based fossil energy sources. The proposed harvester consists mainly of biodegradable matters. It is based on bacterial cellulose, produced by some kind of bacteria, in a sort of bio-factory. The cellulose is further impregnated with ionic liquids and covered with conducting polymers. Due to the mechanoelectrical transduction properties of the composite, an electrical signal is produced at the electrodes, when a mechanical deformation is imposed. Experimental results show that the proposed system is capable of delivering electrical energy on a resistive load. Applications can be envisaged on autonomous or quasi-autonomous electronics, such as wireless sensor networks, distributed measurement systems, wearable, and flexible electronics. The production technology allows for fabricating the harvester with low power consumption, negligible amounts of raw materials, no rare elements, and no pollutant emissions.


Assuntos
Bactérias/metabolismo , Celulose/química , Fontes Geradoras de Energia , Eletrônica , Líquidos Iônicos/química , Polímeros/química , Vibração , Tecnologia sem Fio
3.
J Nanosci Nanotechnol ; 15(1): 504-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26328390

RESUMO

In this work, we synthesized porous nanohydroxyapatite/collagen composite scaffold (nHA-COL), which resemble extracellular matrices in bone and cartilage tissues. Nano hydroxyapatite (nHA) was successfully nucleated in to the collagen matrix using hen eggshell as calcium biogenic source. Porosity was evaluated by apparent and theoretical density measurement. Porosity of all scaffolds was in the range of 95-98%. XRD and TEM analyses show the purity and size of nucleated HA around 10 nm and selected area electron diffraction (SAED) analysis reveals the polycrystalline nature of nucleated HA. SEM analysis reveals (i) all the scaffolds have interconnected pores with an average pore diameter of 130 micron and (ii) aggregates of hydroxyapatite were strongly embedded in the collagen matrix for both composite scaffolds compared with pure collagen scaffold. EDS analysis shows the Ca/P stoichiometric ratio around 1.67 and FTIR reveals the chemical interaction between the collagen molecule and HA particles. The testing of mechanical properties evidenced that incorporation of HA resulted in up to a two-fold increase in compressive modulus with high reinforcement level (-7 kPa for 50HA-50COL) compared to pure collagen scaffold.


Assuntos
Colágeno/química , Durapatita/química , Casca de Ovo/química , Nanoestruturas/química , Alicerces Teciduais/química , Animais , Porosidade , Engenharia Tecidual
4.
Nanomaterials (Basel) ; 13(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36770549

RESUMO

Solar light active photocatalyst was prepared as silver phosphate (Ag3PO4) coating on titania-silica (TiO2-SiO2) microspheres. Titania-silica microsphere was obtained by spray drying TiO2-SiO2 colloidal solutions, whereas Ag3PO4 was applied by wet impregnation. XRD on the granules and SEM analysis show that the silver phosphate particles cover the surface of the titania-silica microspheres, and UV-visible diffuse reflectance analysis highlights that Ag3PO4/TiO2-SiO2 composites can absorb the entire visible light spectrum. BET measurements show higher specific surface area of the composite samples compared to bare Ag3PO4. Photocatalytic activity was evaluated by dye degradation tests under solar light irradiation. The prepared catalysts follow a pseudo-first-order rate law for dye degradation tests under solar light irradiation. The composite catalysts with an Ag3PO4/TiO2-SiO2 ratio of 1:1.6 wt% show better catalytic activity towards both rhodamine B and methylene blue degradation and compared with the results with uncoated TiO2-SiO2 microspheres and the benchmark commercial TiO2 (Evonik-P25) as a reference. The composite photocatalyst showed exceptional efficiency compared to its pristine counterparts and reference material. This is explained as having a higher surface area with optimum light absorption capacity.

5.
Front Bioeng Biotechnol ; 9: 631177, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33614615

RESUMO

In the field of bone tissue regeneration, the development of osteoconductive and osteoinductive scaffolds is an open challenge. The purpose of this work was the design and characterization of composite structures made of hydroxyapatite scaffold impregnated with a collagen slurry in order to mimic the bone tissue structure. The effect of magnesium and silicon ions enhancing both mechanical and biological properties of partially substituted hydroxyapatite were evaluated and compared with that of pure hydroxyapatite. The use of an innovative freeze-drying approach was developed, in which composite scaffolds were immersed in cold water, frozen and then lyophilized, thereby creating an open-pore structure, an essential feature for tissue regeneration. The mechanical stability of bone scaffolds is very important in the first weeks of slow bone regeneration process. Therefore, the biodegradation behavior of 3D scaffolds was evaluated by incubating them for different periods of time in Tris-HCl buffer. The microstructure observation, the weight loss measurements and mechanical stability up to 28 days of incubation (particularly for HA-Mg_Coll scaffolds), revealed moderate weight loss and mechanical performances reduction due to collagen dissolution. At the same time, the presence of collagen helps to protect the ceramic structure until it degrades. These results, combined with MTT tests, confirm that HA-Mg_Coll scaffolds may be the suitable candidate for bone remodeling.

6.
Nanomaterials (Basel) ; 11(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919207

RESUMO

Carbon nanomaterials are a group of materials characterized by sp2/sp3 carbon backbone which, combined with surface atoms and/or chemical groups, ensures peculiar physical chemical features for a wide range of applications. Among these materials, carbon dots and carbon nanoparticles belong to carbon nanomaterials with a few nanometer dimensions. In this work, carbon nanoparticles were produced from spent coffee grounds as sustainable carbon source through a simple, cheap and eco-friendly procedure according to an oxidation process (at controlled temperature) driven by hydrogen peroxide. Atomic Force Microscope (AFM) and fluorescence, UV-Vis absorption, FT-IR and Raman spectroscopy were used to assess the formation of carbon nanomaterials of about 10 nm with the typical emission and absorption properties of carbon dots and peculiar surface features. In fact, the presence of heteroatoms, i.e., phosphorus, and the carbonyl/carboxyl surface groups on carbon nanoparticles, was proposed to confer peculiar properties allowing the fast Mn(VII) reduction to Mn(II) at neutral pH and the Cr(VI) reduction to Cr(III) in weak acid aqueous media.

7.
Materials (Basel) ; 14(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33921972

RESUMO

Success of total knee replacement (TKR) depends on the prosthetic design and materials. The use of metal components is well established with the disadvantage of allergic reactions. Ceramics have been recently proposed because of high wear resistance, excellent biocompatibility, wettability, and suitable mechanical properties. This study was aimed at investigating in vitro wear resistance of Zirconia Toughened Alumina (ZTA)/Ultra-high-molecular-weight polyethylene (UHMWPE) of TKR femoral components. An in vitro protocol was designed with the application of relevant load profile, 6-degrees-of-freedom knee simulator, and 8 × 105 cycles on the ZTA/UHMWPE configuration under bovine calf serum. Before and after wear test, the femoral components were investigated by using the Scanning Electron Microscope (SEM) and the X-Ray Diffraction (XRD) analyses, and stylus surface roughness measurements. The proposed pre-clinical test yielded repeatable results. In particular, gravimetric results showed that, after 8 × 105 cycles, the mean weight loss of the polyethylene mobile components is 5.3 ± 1.1 mg. The surface roughness measurements (Ramax) performed after the wear test showed no significant variation on the UHMWPE menisci. A slight increase of roughness has been found on the ZTA (0.02 µm before wear test, 0.28 µm after the test). SEM observations did not show significant modification of the surface morphology. Tetragonal to monoclinic phase ratio was measured by XRD before and after wear test to evaluate stability of tetragonal ZrO2 phase. Minimal conversion of tetragonal to monoclinic phase was found from 5.4 to 8%. Although this study is a preliminary evaluation limited to in vitro tests, it provides novel pre-clinical indications about the potential of ceramic TKR femoral components.

8.
Materials (Basel) ; 14(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34832344

RESUMO

Magnesium (Mg)- and silicon (Si)-substituted hydroxyapatite (HA) scaffolds were synthesized using the sponge replica method. The influence of Mg2+ and SiO44- ion substitution on the microstructural, mechanical and biological properties of HA scaffolds was evaluated. All synthesized scaffolds exhibited porosity >92%, with interconnected pores and pore sizes ranging between 200 and 800 µm. X-ray diffraction analysis showed that ß-TCP was formed in the case of Mg substitution. X-ray fluorescence mapping showed a homogeneous distribution of Mg and Si ions in the respective scaffolds. Compared to the pure HA scaffold, a reduced grain size was observed in the Mg- and Si-substituted scaffolds, which greatly influenced the mechanical properties of the scaffolds. Mechanical tests revealed better performance in HA-Mg (0.44 ± 0.05 MPa), HA-Si (0.64 ± 0.02 MPa) and HA-MgSi (0.53 ± 0.01 MPa) samples compared to pure HA (0.2 ± 0.01 MPa). During biodegradability tests in Tris-HCl, slight weight loss and a substantial reduction in mechanical performances of the scaffolds were observed. Cell proliferation determined by the MTT assay using hBMSC showed that all scaffolds were biocompatible, and the HA-MgSi scaffold seemed the most effective for cell adhesion and proliferation. Furthermore, ALP activity and osteogenic marker expression analysis revealed the ability of HA-Si and HA-MgSi scaffolds to promote osteoblast differentiation.

9.
Nanomaterials (Basel) ; 10(8)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722422

RESUMO

In recent years, the presence of numerous xenobiotic substances, such as antibiotics, has been detected in water environments. They can be considered as environmental contaminants, even if their effect on human health has yet to be totally understood. Several approaches have been studied for the removal of these kinds of pollutants. Among these compounds, tetracycline (TC), a broad-spectrum antibiotic, is one of the most commonly found in water due to its widespread use. In the context of reducing the presence of TC in aqueous solution, in this contribution, a composite catalyst based on zinc oxide (ZnO) and iron oxide (γ-Fe2O3) was developed and its photocatalytic properties were investigated. The catalytic materials were synthesized by a microwave-assisted aqueous solution method and characterized by Field Emission Scanning Electron Microscope (FESEM), X-Ray Fluorescence (XRF) and Brunauer-Emmett-Teller (BET) analysis. The TC concentration was evaluated by spectrophotometer measurements at specific time intervals. The performed photocatalytic experiments clearly demonstrated that the ZnO/γ-Fe2O3 composite catalyst presents significant photocatalytic activity, indeed a TC degradation efficiency of 88.52% was registered after 150 min. The presence of iron oxide in the structure of the catalyst enhances both the surface area and the pore volume, facilitating the adsorption of the analyte on the surface of nanostructures, a fundamental phase to optimize a photodegradation process. Moreover, ZnO was found to play the key role in the photocatalytic process assisted by γ-Fe2O3 which enhanced the TC degradation efficiency by 20%.

10.
Materials (Basel) ; 12(19)2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31546617

RESUMO

PURPOSE: The grafting procedure for the anthropic ridges of jaws represents a surgical technique for increasing the bone volume to permit the placement of dental implants for oral rehabilitations. The aim of this study was to evaluate a hydroxyapatite (HA) porous scaffold produced via a sponge replica method for the treatment of maxillary bone defects in a human model. METHODS: A total of thirteen patients were treated for sinus lifting in the posterior maxilla for a total of 16 defects treated with cylindrical HA Block. The experimental sites were evaluated by a 3D Cone Beam Computer Tomography scan (CBCT), and the histological analysis was performed after 3 months of healing. RESULTS: After the 3 months healing period, the histological outcome of the investigation showed a high level of biological osteoconduction of the HA. Microscopical evidence of new bone formation was also observed in the central portion of the graft block. The samples were composed of different tissues: 39 ± 1% new bone, 42 ± 3% marrow space, 17 ± 3% residual HA Block and 4.02 ± 2% osteoid tissue were present. The new bone formation in the block was 8 ± 3%. Conclusions: The study findings support that HA porous scaffolds produced by sponge replica were effective for the treatment of maxillary bone defects in humans.

11.
ACS Omega ; 2(7): 3632-3639, 2017 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023700

RESUMO

Bacterial cellulose (BC) functionalized with silver nanoparticles (AgNPs) is evaluated as an antimicrobial membrane for wound-healing treatment. A facile green synthesis of silver nanoparticles inside the porous three-dimensional weblike BC network has been obtained by UV light irradiation. AgNPs were photochemically deposited onto the BC gel network as well as they were chemically bonded to the cellulose fiber surfaces. AgNPs with a narrow size distribution along with some aggregates in the BC network were evidenced from the morphological analyses. A highly crystalline nature of the BC membranes was observed in X-ray diffraction measurements, and the presence of metallic silver confirmed the photochemical reduction of Ag+ → Ag0 in Ag/BC composites. Antibacterial activity of the hybrid composites, such as pellicles, performed against the Gram-negative bacteria (Escherichia coli) by disk diffusion and growth dynamics methods showed high bacteria-killing performance. No significant amount of silver release was observed from the Ag/BC pellicles even after a long soaking time. As composite pellicles are preserved in a moist environment that also favors wound recovery, by combining all of these properties the material could be useful in wound-healing treatments.

12.
J Anal Methods Chem ; 2017: 9476065, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28804670

RESUMO

Mixed iron-manganese oxide nanoparticles, synthesized by a simple procedure, were used to remove nickel ion from aqueous solutions. Nanostructures, prepared by using different weight percents of manganese, were characterized by transmission electron microscopy, selected area diffraction, X-ray diffraction, Raman spectroscopy, and vibrating sample magnetometry. Adsorption/desorption isotherm curves demonstrated that manganese inclusions enhance the specific surface area three times and the pores volume ten times. This feature was crucial to decontaminate both aqueous samples and food extracts from nickel ion. Efficient removal of Ni2+ was highlighted by the well-known dimethylglyoxime test and by ICP-MS analysis and the possibility of regenerating the nanostructure was obtained by a washing treatment in disodium ethylenediaminetetraacetate solution.

13.
Mater Sci Eng C Mater Biol Appl ; 63: 499-505, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27040244

RESUMO

Biomimetic scaffolds with a structural and chemical composition similar to native bone tissue may be promising for bone tissue regeneration. In the present work hydroxyapatite mesoporous microspheres (mHA) were incorporated into collagen scaffolds containing an ordered interconnected macroporosity. The mHA were obtained by spray drying of a nano hydroxyapatite slurry prepared by the precipitation technique. X-ray diffraction (XRD) analysis revealed that the microspheres were composed only of hydroxyapatite (HA) phase, and energy-dispersive x-ray spectroscopy (EDS) analysis revealed the Ca/P ratio to be 1.69 which is near the value for pure HA. The obtained microspheres had an average diameter of 6 µm, a specific surface area of 40 m(2)/g as measured by Brunauer-Emmett-Teller (BET) analysis, and Barrett-Joyner-Halenda (BJH) analysis showed a mesoporous structure with an average pore diameter of 16 nm. Collagen/HA-microsphere (Col/mHA) composite scaffolds were prepared by freeze-drying followed by dehydrothermal crosslinking. SEM observations of Col/mHA scaffolds revealed HA microspheres embedded within a porous collagen matrix with a pore size ranging from a few microns up to 200 µm, which was also confirmed by histological staining of sections of paraffin embedded scaffolds. The compressive modulus of the composite scaffold at low and high strain values was 1.7 and 2.8 times, respectively, that of pure collagen scaffolds. Cell proliferation measured by the MTT assay showed more than a 3-fold increase in cell number within the scaffolds after 15 days of culture for both pure collagen scaffolds and Col/mHA composite scaffolds. Attractive properties of this composite scaffold include the potential to load the microspheres for drug delivery and the controllability of the pore structure at various length scales.


Assuntos
Materiais Biomiméticos/química , Colágeno/química , Durapatita/química , Microesferas , Materiais Biomiméticos/farmacologia , Regeneração Óssea/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Força Compressiva , Humanos , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Alicerces Teciduais/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA