Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Basic Microbiol ; 63(12): 1383-1396, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37821414

RESUMO

Newcastle disease (ND) is an endemic viral disease affecting poultry and causing massive economic losses. This cross-sectional purposive study detected coinfections that are associated with the Newcastle disease virus among poultry from selected regions in Kenya. Cloacal (n = 599) and oral-pharyngeal (n = 435) swab samples were collected and pooled into 17 and 15 samples, respectively. A total of 17,034,948 and 7,751,974 paired-end reads with an average of 200 nucleotides were generated from the cloacal and oral-pharyngeal swab samples, respectively. Analysis of the de novo assembled contigs identified 177 and 18 cloacal and oral-pharyngeal contigs, respectively with hits to viral sequences, as determined by BLASTx and BLASTn analyses. Several known and unknown representatives of Coronaviridae, Picobirnaviridae, Reoviridae, Retroviridae, and unclassified Deltavirus were identified in the cloacal swab samples. However, no Newcastle disease virus (family Paramyxoviridae) was detected in the cloacal swabs, although they were detected in the oropharyngeal swabs of chickens sampled in Nairobi, Busia, and Trans Nzoia. Additionally, sequences representative of Paramyxoviridae, Coronaviridae, and Retroviridae were identified in the oral-pharyngeal swab samples. Infectious bronchitis virus and rotavirus were chickens' most prevalent coinfections associated with the Newcastle disease virus. The detection of these coinfections suggests that these viruses are significant threats to the control of Newcastle disease as the Newcastle disease virus vaccines are known to fail because of these coinfections. Therefore, this study provides important information that will help improve disease diagnosis and vaccine development for coinfections associated with the Newcastle disease virus.


Assuntos
Coinfecção , Doença de Newcastle , Doenças das Aves Domésticas , Animais , Vírus da Doença de Newcastle/genética , Doença de Newcastle/diagnóstico , Doença de Newcastle/epidemiologia , Doença de Newcastle/prevenção & controle , Aves Domésticas , Galinhas , Coinfecção/epidemiologia , Coinfecção/veterinária , Quênia/epidemiologia , Estudos Transversais , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/prevenção & controle
2.
Int J Microbiol ; 2024: 8054338, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38374958

RESUMO

Poultry enteric bacterial diseases are of significant economic importance because they are responsible for production losses due to weight loss, increased morbidity and mortality, and increased cost of production arising from poor feed conversion and treatment. This cross-sectional purposive study characterized enteric bacterial pathogens in poultry from selected agroclimatic regions in Kenya and investigated their antimicrobial resistance gene profiles. Cloacal (n = 563) and oropharyngeal (n = 394) swabs were collected and pooled into 16 and 14 samples, respectively, to characterize bacterial pathogens and their antimicrobial resistance gene profiles. We report that Proteobacteria, Chlamydiae, and Firmicutes are the most dominant phyla present in both cloacal and oropharyngeal swabs of the six poultry species studied, indicating the colonization of the poultry gut by many pathogenic bacteria. Using KEGG and COG databases, some pathways related to metabolism, genetic information, and cellular processing were detected. We also report the abundance of antimicrobial resistance genes that confer resistance to ß-lactamases, aminoglycosides, and tetracycline in most of the poultry analyzed, raising concern about the dangers associated with continuous and inappropriate use of these antibiotics in poultry production. The antimicrobial resistance gene data generated in this study provides a valuable indicator of the use of antimicrobials in poultry in Kenya. The information generated is essential for managing bacterial diseases, especially in backyard poultry raised under scavenging conditions.

3.
Infect Dis (Lond) ; 56(9): 776-782, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38913503

RESUMO

BACKGROUND: Although the diverse communities of tick-borne viruses (TBVs) have recently been proposed, the threat of infection and exposure to TBVs among humans across Kenya has been poorly understood. OBJECTIVE: Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne viral agent associated with the epidemic of severe fever with thrombocytopenia syndrome (SFTS) disease in East Asian countries. This study investigated the seroprevalence of SFTSV among humans in Kenya. METHODS: Serum samples were collected from 459 healthy people in Kenya and tested for anti-SFTSV antibodies, which were further confirmed by immunofluorescence assays. Micro neutralization assays were performed to identify neutralising antibodies against SFTSV and SFTSV-related viruses. RESULTS: A high seroprevalence (162/459, 35.3%) of SFTSV was found in the samples from nine of the ten surveyed counties in Kenya, with higher rates in the eastern plateau forelands, semiarid and arid areas, and coastal areas than in the area aside Rift valley. The seropositive rate was slightly higher in women than in men and was significantly higher in the 55-64 age group. Neutralising activity against SFTSV was detected in four samples, resulting in a rate of 0.9%. No cross-neutralising activity against the SFTSV-related Guertu virus and Heartland virus was detected in the anti-SFTSV positive serum samples. CONCLUSION: The results provide serologic evidence of human exposure to SFTSV in Kenya and extend our understanding of SFTSV prevalence from Asia to Africa. The findings suggest an increasing threat of exposure to emerging TBVs and the need to investigate tick viromes in Kenya.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Humanos , Quênia/epidemiologia , Feminino , Masculino , Pessoa de Meia-Idade , Phlebovirus/imunologia , Estudos Soroepidemiológicos , Adulto , Anticorpos Antivirais/sangue , Febre Grave com Síndrome de Trombocitopenia/epidemiologia , Febre Grave com Síndrome de Trombocitopenia/virologia , Adolescente , Adulto Jovem , Idoso , Anticorpos Neutralizantes/sangue , Testes de Neutralização , Criança , Pré-Escolar , Idoso de 80 Anos ou mais
4.
Viruses ; 15(1)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36680247

RESUMO

Porcine parvovirus 1 (PPV1) is recognized as a major cause of reproductive failure in pigs, leading to several clinical outcomes globally known as SMEDI. Despite being known since the late 1960s its circulation is still of relevance to swine producers. Additionally, the emergence of variants such as the virulent 27a strain, for which lower protection induced by vaccines has been demonstrated, is of increasing concern. Even though constant monitoring of PPV1 using molecular epidemiological approaches is of pivotal importance, viral sequence data are scarce especially in low-income countries. To fill this gap, a collection of 71 partial VP2 sequences originating from eight African countries (Burkina Faso, Côte d'Ivoire, Kenya, Mozambique, Namibia, Nigeria, Senegal, and Tanzania) during the period 2011-2021 were analyzed within the context of global PPV1 variability. The observed pattern largely reflected what has been observed in high-income regions, i.e., 27a-like strains were more frequently detected than less virulent NADL-8-like strains. A phylogeographic analysis supported this observation, highlighting that the African scenario has been largely shaped by multiple PPV1 importation events from other continents, especially Europe and Asia. The existence of such an international movement coupled with the circulation of potential vaccine-escape variants requires the careful evaluation of the control strategies to prevent new strain introduction and persistence.


Assuntos
Parvovirus Suíno , Suínos , Animais , Parvovirus Suíno/genética , Filogeografia , Burkina Faso , Côte d'Ivoire/epidemiologia , Senegal
5.
Ecol Evol ; 11(24): 18562-18574, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35003693

RESUMO

Hunting wild African harlequin quails (Coturnix delegorguei delegorguei) using traditional methods in Western Kenya has been ongoing for generations, yet their genetic diversity and evolutionary history are largely unknown. In this study, the genetic variation and demographic history of wild African harlequin quails were assessed using a 347bp mitochondrial DNA (mtDNA) control region fragment and 119,339 single nucleotide polymorphisms (SNPs) from genotyping-by-sequencing (GBS) data. Genetic diversity analyses revealed that the genetic variation in wild African harlequin quails was predominantly among individuals than populations. Demographic analyses indicated a signal of rapid demographic expansion, and the estimated time since population expansion was found to be 150,000-350,000 years ago, corresponding to around the Pliocene-Pleistocene boundary. A gradual decline in their effective population size was also observed, which raised concerns about their conservation status. These results provide the first account of the genetic diversity of wild African harlequin quails of Siaya, thereby creating a helpful foundation in their biodiversity conservation.

6.
Microorganisms ; 9(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923417

RESUMO

Goatpox virus (GTPV) belongs to the genus Capripoxvirus, together with sheeppox virus (SPPV) and lumpy skin disease virus (LSDV). GTPV primarily affects sheep, goats and some wild ruminants. Although GTPV is only present in Africa and Asia, the recent spread of LSDV in Europe and Asia shows capripoxviruses could escape their traditional geographical regions to cause severe outbreaks in new areas. Therefore, it is crucial to develop effective source tracing of capripoxvirus infections. Earlier, conventional phylogenetic methods, based on limited samples, identified three different nucleotide sequence profiles in the G-protein-coupled chemokine receptor (GPCR) gene of GTPVs. However, this method did not differentiate GTPV strains by their geographical origins. We have sequenced the GPCR gene of additional GTPVs and analyzed them with publicly available sequences, using conventional alignment-based methods and an alignment-free approach exploiting k-mer frequencies. Using the alignment-free method, we can now classify GTPVs based on their geographical origin: African GTPVs and Asian GTPVs, which further split into Western and Central Asian (WCA) GTPVs and Eastern and Southern Asian (ESA) GTPVs. This approach will help determine the source of introduction in GTPV emergence in disease-free regions and detect the importation of additional strains in disease-endemic areas.

7.
Emerg Microbes Infect ; 10(1): 1975-1987, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34570681

RESUMO

ABSTRACTTick-borne viruses (TBVs) capable of transmitting between ticks and hosts have been increasingly recognized as a global public health concern. In this study, Hyalomma ticks and serum samples from camels were collected using recorded sampling correlations in eastern Kenya. Viromes of pooled ticks were profiled by metagenomic sequencing, revealing a diverse community of viruses related to at least 11 families. Five highly abundant viruses, including three novel viruses (Iftin tick virus, Mbalambala tick virus [MATV], and Bangali torovirus [BanToV]) and new strains of previously identified viruses (Bole tick virus 4 [BLTV4] and Liman tick virus [LMTV]), were characterized in terms of genome sequences, organizations, and phylogeny, and their molecular prevalence was investigated in individual ticks. Moreover, viremia and antibody responses to these viruses have been investigated in camels. MATV, BLTV4, LMTV, and BanToV were identified as viral pathogens that can potentially cause zoonotic diseases. The transmission patterns of these viruses were summarized, suggesting three different types according to the sampling relationships between viral RNA-positive ticks and camels positive for viral RNA and/or antibodies. They also revealed the frequent transmission of BanToV and limited but effective transmission of other viruses between ticks and camels. Furthermore, follow-up surveys on TBVs from tick, animal, and human samples with definite sampling relationships are suggested. The findings revealed substantial threats from the emerging TBVs and may guide the prevention and control of TBV-related zoonotic diseases in Kenya and in other African countries.


Assuntos
Camelus/virologia , Infecções por Vírus de RNA/transmissão , Infecções por Vírus de RNA/veterinária , Vírus de RNA/genética , Doenças Transmitidas por Carrapatos/virologia , Carrapatos/virologia , Animais , Genoma Viral/genética , Humanos , Quênia/epidemiologia , RNA Viral/genética , Infestações por Carrapato/epidemiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Carrapatos/classificação , Viroma/genética
8.
Microorganisms ; 9(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073392

RESUMO

Lumpy skin disease (LSD), an economically significant disease in cattle caused by lumpy skin disease virus (LSDV), is endemic to nearly all of Africa. Since 2012, LSDV has emerged as a significant epizootic pathogen given its rapid spread into new geographical locations outside Africa, including the Middle East, Eastern Europe, and Asia. To assess the genetic diversity of LSDVs in East Africa, we sequenced and analyzed the RPO30 and GPCR genes of LSDV in twenty-two archive samples collected in Ethiopia, Kenya, and Sudan before the appearance of LSD in the Middle East and its incursion into Europe. We compared them to publicly available sequences of LSDVs from the same region and those collected elsewhere. The results showed that the East African field isolates in this study were remarkably similar to each other and to previously sequenced field isolates of LSDV for the RPO30 and GPCR genes. The only exception was LSDV Embu/B338/2011, a field virus collected in Kenya, which displayed mixed features between the LSDV Neethling vaccine and field isolates. LSDV Embu/B338/2011 had the same 12-nucleotide insertion found in LSDV Neethling and KS-1 vaccines. Further analysis of the partial EEV glycoprotein, B22R, RNA helicase, virion core protein, NTPase, and N1R/p28-like protein genes showed that LSDV Embu/B338/2011 differs from previously described LSDV variants carrying the 12-nucleotide insertion in the GPCR gene. These findings highlight the importance of the constant monitoring of genetic variation among LSDV isolates.

9.
Zool Res ; 42(4): 450-460, 2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34156172

RESUMO

Over the last several hundred years, donkeys have adapted to high-altitude conditions on the Tibetan Plateau. Interestingly, the kiang, a closely related equid species, also inhabits this region. Previous reports have demonstrated the importance of specific genes and adaptive introgression in divergent lineages for adaptation to hypoxic conditions on the Tibetan Plateau. Here, we assessed whether donkeys and kiangs adapted to the Tibetan Plateau via the same or different biological pathways and whether adaptive introgression has occurred. We assembled a de novo genome from a kiang individual and analyzed the genomes of five kiangs and 93 donkeys (including 24 from the Tibetan Plateau). Our analyses suggested the existence of a strong hard selective sweep at the EPAS1 locus in kiangs. In Tibetan donkeys, however, another gene, i.e., EGLN1, was likely involved in their adaptation to high altitude. In addition, admixture analysis found no evidence for interspecific gene flow between kiangs and Tibetan donkeys. Our findings indicate that despite the short evolutionary time scale since the arrival of donkeys on the Tibetan Plateau, as well as the existence of a closely related species already adapted to hypoxia, Tibetan donkeys did not acquire adaptation via admixture but instead evolved adaptations via a different biological pathway.


Assuntos
Adaptação Fisiológica/genética , Altitude , Equidae/genética , Equidae/fisiologia , Genoma , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Evolução Biológica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/fisiologia , Especificidade da Espécie
10.
Genome Biol Evol ; 13(6)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34009300

RESUMO

Domestication of the helmeted guinea fowl (HGF; Numida meleagris) in Africa remains elusive. Here we report a high-quality de novo genome assembly for domestic HGF generated by long- and short-reads sequencing together with optical and chromatin interaction mapping. Using this assembly as the reference, we performed population genomic analyses for newly sequenced whole-genomes for 129 birds from Africa, Asia, and Europe, including domestic animals (n = 89), wild progenitors (n = 34), and their closely related wild species (n = 6). Our results reveal domestication of HGF in West Africa around 1,300-5,500 years ago. Scanning for selective signals characterized the functional genes in behavior and locomotion changes involved in domestication of HGF. The pleiotropy and linkage in genes affecting plumage color and fertility were revealed in the recent breeding of Italian domestic HGF. In addition to presenting a missing piece to the jigsaw puzzle of domestication in poultry, our study provides valuable genetic resources for researchers and breeders to improve production in this species.


Assuntos
Domesticação , Galliformes/genética , Genoma , Filogenia , Animais , Variação Genética , Masculino , Filogeografia , Seleção Genética
11.
Int J Microbiol ; 2020: 4705768, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32908524

RESUMO

Newcastle disease (ND) causes significant economic losses in the poultry industry in developing countries. In Kenya, despite rampant annual ND outbreaks, implementation of control strategies is hampered by a lack of adequate knowledge on the circulating and outbreak causing-NDV strains. This study reports the first complete genome sequences of NDV from backyard chicken in Kenya. The results showed that all three isolates are virulent, as assessed by the mean death time (MDT) and intracerebral pathogenicity index (ICPI) in specific antibody negative (SAN) embryonated eggs and 10-day-old chickens, respectively. Also, the polybasic amino acid sequence at the fusion-protein cleavage site had the motif 112RRQKRFV118. Histopathological findings in four-week-old SPF chicken challenged with the NDV isolates KE001, KE0811, and KE0698 showed multiple organ involvement at five days after infection with severe effects seen in lymphoid tissues and blood vessels. Analysis of genome sequences obtained from the three isolates showed that they were 15192 base pair (bp) in length and had genomic features consistent with other NDV strains, the functional sites within the coding sequence being highly conserved in the sequence of the three isolates. Amino acid residues and substitutions in the structural proteins of the three isolates were similar to the newly isolated Tanzanian NDV strain (Mbeya/MT15). A similarity matrix showed a high similarity of the isolates to NDV strains of class II genotype V (89-90%) and subgenotype Vd (95-97%). Phylogenetic analysis confirmed that the three isolates are closely related to NDV genotype V strains but form a distinct cluster together with NDV strains from the East African countries of Uganda and Tanzania to form the newly characterized subgenotype Vd. Our study provides the first description of the genomic and pathological characteristics of NDV of subgenotype Vd and lays a baseline in understanding the evolutionary dynamics of NDV and, in particular, Genotype V. This information will be useful in the development of specific markers for detection of viruses of genotype V and generation of genotype matched vaccines.

12.
Zool Res ; 41(1): 51-60, 2020 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-31709786

RESUMO

Molecular studies on donkey mitochondrial sequences have clearly defined two distinct maternal lineages involved in domestication. However, domestication histories of these two lineages remain enigmatic. We therefore compared several population characteristics between these two lineages based on global sampling, which included 171 sequences obtained in this study (including Middle Asian, East Asian, and African samples) plus 536 published sequences (including European, Asian, and African samples). The two lineages were clearly separated from each other based on whole mitochondrial genomes and partial non-coding displacement loop (D-loop) sequences, respectively. The Clade I lineage experienced an increase in population size more than 8 000 years ago and shows a complex haplotype network. In contrast, the population size of the Clade II lineage has remained relatively constant, with a simpler haplotype network. Although the distribution of the two lineages was almost equal across the Eurasian mainland, they still presented discernible but complex geographic bias in most parts of Africa, which are known as their domestication sites. Donkeys from sub-Saharan Africa tended to descend from the Clade I lineage, whereas the Clade II lineage was dominant along the East and North coasts of Africa. Furthermore, the migration routes inferred from diversity decay suggested different expansion across China between the two lineages. Altogether, these differences indicated non-simultaneous domestication of the two lineages, which was possibly influenced by the response of pastoralists to the desertification of the Sahara and by the social expansion and trade of ancient humans in Northeast Africa, respectively.


Assuntos
DNA Mitocondrial/genética , Domesticação , Equidae/genética , Variação Genética , Filogenia , Animais , Haplótipos
13.
Poult Sci ; 98(7): 2747-2755, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30850827

RESUMO

Indigenous chickens at the Swahili coast and other traditional migratory corridors in Kenya represent important populations that are inconclusively characterized. Using a comprehensive dataset of Kenyan indigenous chickens and additional mined data of chickens from 8 African and 5 Asian countries, we performed univariate and multivariate assessments to uncover the underlying phenotypic and morphometric variability. Kenyan indigenous chickens expressed differentiation of several qualitative and quantitative traits, both among different counties in the Swahili coast, and among coastal, western, and northern migratory corridors. There was a substantial population stratification of these chickens, particularly distinctive clustering of chickens from Marsabit, Lamu, and Kilifi counties. The pooled dataset further clarified a closer phenotypic and morphometric proximity of chickens within different geographical regions. We additionally revealed a preponderance of bantam and rumpless traits to hot and humid locales, and feathered shanks to cooler regions. Currently, most chicken breeding programs in developing countries rely on phenotypic and morphometric properties. Hence, the high chicken diversity and population stratification observed in our study, possibly shaped by natural and artificial selective pressures, reveal opportunities for complementary phenotypic and genotypic assessments to identify resources for effective breed improvement and conservation strategies of indigenous chickens in the tropics.


Assuntos
Galinhas/anatomia & histologia , Galinhas/classificação , Animais , Galinhas/genética , Feminino , Quênia , Masculino , Fenótipo , Clima Tropical
14.
Emerg Microbes Infect ; 8(1): 1528-1534, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31645223

RESUMO

Dromedary camels are important reservoir hosts of various coronaviruses, including Middle East respiratory syndrome coronavirus (MERS-CoV) that cause human infections. CoV genomes regularly undergo recombination during infection as observed in bat SARS-related CoVs. Here we report for the first time that only a small proportion of MERS-CoV receptor-binding domain positive (RBD) of spike protein positive camel sera in Kenya were also seropositive to MERS-CoV nucleocapsid (NP). In contrast, many of them contain antibodies against bat HKU8-related (HKU8r)-CoVs. Among 584 camel samples that were positive against MERS-CoV RBD, we found only 0.48 (8.22%) samples were also positive for NP. Furthermore, we found bat HKU8r-CoV NP antibody in 73 (12.5%) of the MERS-CoV RBD positive and NP negative samples, yet found only 3 (0.43%) of the HKU8r-CoV S1 antibody in the same samples. These findings may indicate co-infection with MERS-CoV and a HKU8r-CoV in camels. It may also raise the possibility of the circulation of a recombinant coronavirus virus with the spike of MERS-CoV and the NP of a HKU8r-CoV in Kenya. We failed to find molecular evidence of an HKU8r-CoV or a putative recombinant virus. Our findings should alert other investigators to look for molecular evidence of HKU8r-CoV or recombinants.


Assuntos
Camelus/virologia , Infecções por Coronavirus/veterinária , Coronavirus/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Animais , Anticorpos Antivirais/sangue , Camelus/sangue , Quirópteros/virologia , Coronavirus/genética , Coronavirus/isolamento & purificação , Infecções por Coronavirus/sangue , Infecções por Coronavirus/virologia , Quênia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Proteínas do Nucleocapsídeo/imunologia , Recombinação Genética , Glicoproteína da Espícula de Coronavírus/imunologia
16.
Int J Microbiol ; 2018: 2368597, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30154854

RESUMO

Newcastle disease (ND) is a serious disease of poultry that causes significant economic losses. Despite rampant ND outbreaks that occur annually in Kenya, the information about the NDV circulating in Kenya is still scarce. We report the first countrywide study of NDV in Kenya. Our study is aimed at evaluating the genetic characteristics of Newcastle disease viruses obtained from backyard poultry in farms and live bird markets in different regions of Kenya. We sequenced and analyzed fusion (F) protein gene, including the cleavage site, of the obtained viruses. We aligned and compared study sequences with representative NDV of different genotypes from GenBank. The fusion protein cleavage site of all the study sequences had the motif 112RRQKRFV118 indicating their velogenic nature. Phylogenetic analysis revealed that the NDV from various sites in Kenya was highly similar genetically and that it clustered together with NDV of genotype V. The study samples were 96% similar to previous Ugandan and Kenyan viruses grouped in subgenotype Vd This study points to possible circulation of NDV of similar genetic characteristics between backyard poultry farms and live bird markets in Kenya. The study also suggests the possible spread of velogenic NDV between Kenya and Uganda possibly through cross-border live bird trade. Our study provides baseline information on the genetic characteristics of NDV circulating in the Kenyan poultry population. This highlights the need for the ND control programmes to place more stringent measures on cross-border trade of live bird markets and poultry products to prevent the introduction of new strains of NDV that would otherwise be more difficult to control.

17.
Biomed Res Int ; 2018: 7314038, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30539018

RESUMO

We analyzed variations in 90 mitochondrial DNA (mtDNA) D-loop and heat shock protein 70 (HSP70) gene sequences from four populations of domesticated helmeted Guinea fowls (70 individuals) and 1 population of wild helmeted Guinea fowls (20 individuals) in Kenya in order to get information about their origin, genetic diversity, and traits associated with heat stress. 90 sequences were assigned to 25 distinct mtDNA and 4 HSP70 haplotypes. Most mtDNA haplotypes of the domesticated helmeted Guinea fowls were grouped into two main haplogroups, HgA and HgB. The wild population grouped into distinct mtDNA haplogroups. Two mtDNA haplotypes dominated across all populations of domesticated helmeted Guinea fowls: Hap2 and Hap4, while the dominant HSP70 haplotype found in all populations was CGC. Higher haplotype diversities were generally observed. The HSP70 haplotype diversities were low across all populations. The nucleotide diversity values for both mtDNA and HSP70 were generally low. Most mtDNA genetic variations occurred among populations for the three hierarchical categories considered while most variations in the HSP70 gene occurred among individuals within population. The lack of population structure among the domestic populations could suggest intensive genetic intermixing. The differentiation of the wild population may be due to a clearly distinct demographic history that shaped its genetic profile. Analysis of the Kenyan Guinea fowl population structure and history based on mtDNA D-loop variations and HSP70 gene functional polymorphisms complimented by archaeological and linguistic insight supports the hypothesis that most domesticated helmeted Guinea fowls in Kenya are related to the West African domesticated helmeted Guinea fowls. We recommend more molecular studies on this emerging poultry species with potential for poverty alleviation and food security against a backdrop of climate change in Africa.


Assuntos
Aves/genética , DNA Mitocondrial/química , DNA Mitocondrial/genética , Proteínas de Choque Térmico HSP70/genética , Conformação de Ácido Nucleico , Polimorfismo Genético , Migração Animal/fisiologia , Animais , Arqueologia , Geografia , Haplótipos/genética , Quênia , Funções Verossimilhança , Linguística , Filogenia , Análise de Regressão
18.
Virol Sin ; 33(6): 484-492, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30570714

RESUMO

We describe the first genome isolation of Middle East respiratory syndrome coronavirus (MERS-CoV) in Kenya. This fatal zoonotic pathogen was first described in the Kingdom of Saudi Arabia in 2012. Epidemiological and molecular evidence revealed zoonotic transmission from camels to humans and between humans. Currently, MERS-CoV is classified by the WHO as having high pandemic potential requiring greater surveillance. Previous studies of MERS-CoV in Kenya mainly focused on site-specific and archived camel and human serum samples for antibodies. We conducted active nationwide cross-sectional surveillance of camels and humans in Kenya, targeting both nasal swabs and plasma samples from 1,163 camels and 486 humans collected from January 2016 to June 2018. A total of 792 camel plasma samples were positive by ELISA. Seroprevalence increased with age, and the highest prevalence was observed in adult camels (82.37%, 95% confidence interval (CI) 79.50-84.91). More female camels were significantly seropositive (74.28%, 95% CI 71.14-77.19) than male camels (P < 0.001) (53.74%, 95% CI 48.48-58.90). Only 11 camel nasal swabs were positive for MERS-CoV by reverse transcription-quantitative PCR. Phylogenetic analysis of whole genome sequences showed that Kenyan MERS-CoV clustered within sub-clade C2, which is associated with the African clade, but did not contain signature deletions of orf4b in African viruses. None of the human plasma screened contained neutralizing antibodies against MERS-CoV. This study confirms the geographically widespread occurrence of MERS-CoV in Kenyan camels. Further one-health surveillance approaches in camels, wildlife, and human populations are needed.


Assuntos
Camelus/virologia , Infecções por Coronavirus/veterinária , Reservatórios de Doenças/veterinária , Genoma Viral , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Fatores Etários , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Infecções por Coronavirus/transmissão , Estudos Transversais , Reservatórios de Doenças/virologia , Feminino , Humanos , Quênia , Masculino , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Nariz/virologia , Filogenia , Prevalência , RNA Viral/genética , RNA Viral/isolamento & purificação , Estudos Soroepidemiológicos , Sequenciamento Completo do Genoma , Zoonoses/transmissão , Zoonoses/virologia
19.
Prev Vet Med ; 140: 87-96, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28460754

RESUMO

We applied social network analysis to pig trader networks on the Kenya-Uganda border. Social network analysis is a recently developed tool, which is useful for understanding value chains and improving disease control policies. We interviewed a sample of 33 traders about their experiences with trade and African swine fever (ASF), analyzed the networks they generated in purchasing pigs and selling pork and their potential contribution to modulating dissemination of the ASF virus (ASFV). The majority of the traders were aware of clinical signs of ASF and the risk of trade transmitting ASFV. Most said they avoided buying pigs from ASF outbreak villages or sick pigs but their experiences also indicated that inadvertent purchase was relatively common. Traders had early knowledge of outbreaks since they were contacted by farmers who had heard rumours and wanted to sell their pigs to avoid the risk of them dying. Individual traders bought pigs in up to nine villages, and up to six traders operated in a village. Although each trade typically spanned less than 5km, networks of the various traders, comprising movements of pigs from source villages to slaughter slabs/sites and retail outlets, and movement of pork to villages where it was consumed, linked up indirectly across the 100km×50km study area and revealed several trade pathways across the Kenya-Uganda border. ASF could potentially spread across this area and beyond through sequential pig and pork transactions. Regulation of the pig and pork trade was minimal in practice. The risk of ASFV being spread by traders was compounded by their use of poorly constructed slaughter slabs/sites with open drainage, ineffective or non-existent meat inspection services, lack of provision for biosecurity in the value chain, and sales of pork to customers who were unaware of the risks to their own pigs from contact with ASF infected pork. More effective regulation is warranted. However, limitations on government capacity, together with the strong self-interest that established traders have in reducing the disruption and financial losses that outbreaks cause, highlight the importance of governments and traders co-developing an approach to ASF control. Formation of trader organizations or common interest groups warrants government support as an important step in engaging traders in developing and implementing effective approaches to reduce the risk of ASF outbreaks.


Assuntos
Matadouros , Febre Suína Africana/prevenção & controle , Febre Suína Africana/psicologia , Febre Suína Africana/epidemiologia , Febre Suína Africana/transmissão , Vírus da Febre Suína Africana , Criação de Animais Domésticos , Animais , Comércio , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Entrevistas como Assunto , Quênia/epidemiologia , Fatores de Risco , Gestão de Riscos , Suínos , Uganda/epidemiologia
20.
J Genet Genomics ; 44(3): 163-170, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28302420

RESUMO

Domestic dogs have an ancient origin and a long history in Africa. Nevertheless, the timing and sources of their introduction into Africa remain enigmatic. Herein, we analyse variation in mitochondrial DNA (mtDNA) D-loop sequences from 345 Nigerian and 37 Kenyan village dogs plus 1530 published sequences of dogs from other parts of Africa, Europe and West Asia. All Kenyan dogs can be assigned to one of three haplogroups (matrilines; clades): A, B, and C, while Nigerian dogs can be assigned to one of four haplogroups A, B, C, and D. None of the African dogs exhibits a matrilineal contribution from the African wolf (Canis lupus lupaster). The genetic signal of a recent demographic expansion is detected in Nigerian dogs from West Africa. The analyses of mitochondrial genomes reveal a maternal genetic link between modern West African and North European dogs indicated by sub-haplogroup D1 (but not the entire haplogroup D) coalescing around 12,000 years ago. Incorporating molecular anthropological evidence, we propose that sub-haplogroup D1 in West African dogs could be traced back to the late-glacial dispersals, potentially associated with human hunter-gatherer migration from southwestern Europe.


Assuntos
DNA Mitocondrial/genética , Cães/genética , África Ocidental , Animais , Europa (Continente) , Variação Genética , Haplótipos , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA