Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecology ; 99(8): 1815-1824, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29800495

RESUMO

Many mutualisms are taken advantage of by organisms that take rewards from their partners but provide no benefit in return. In the absence of traits that limit exploitation, facultative exploiters (partners that can either exploit or cooperate) are widely predicted by mutualism theory to choose an exploitative strategy, potentially threatening mutualism stability. However, it is unknown whether facultative exploiters choose to exploit, and, if so, make this choice because it is the most beneficial strategy for them. We explored these questions in a subalpine plant-insect community in which individuals of several bumble bee species visit flowers both "legitimately" (entering via the flower opening, picking up and depositing pollen, and hence behaving mutualistically) and via nectar robbing (creating holes through corollas or using an existing hole, bypassing stigmas and anthers). We applied foraging theory to (1) quantify handling costs, benefits and foraging efficiencies incurred by three bumble bee species as they visited flowers legitimately or robbed nectar in cage experiments, and (2) determine whether these efficiencies matched the food handling tactics these bee species employed in the field. Relative efficiencies of legitimate and robbing tactics depended on the combination of bee and plant species. In some cases (Bombus mixtus visiting Corydalis caseana or Mertensia ciliata), the robbing tactic permitted more efficient nectar removal. As both mutualism and foraging theory would predict, in the field, B. mixtus visiting C. caseana were observed more frequently robbing than foraging legitimately. However, for Bombus flavifrons visiting M. ciliata, the expectation from mutualism theory did not hold: legitimate visitation was the more efficient tactic. Legitimate visitation to M. ciliata was in fact more frequently observed in free-flying B. flavifrons. Free-flying B. mixtus also frequently visited M. ciliata flowers legitimately. This may reflect lower nectar volumes in robbed than unrobbed flowers in the field. These results suggest that a foraging ecology perspective is informative to the choice of tactics facultative exploiters make. In contrast, the simple expectation that exploiters should always have an advantage, and hence could threaten mutualism persistence unless they are deterred or punished, may not be broadly applicable.


Assuntos
Polinização , Simbiose , Animais , Abelhas , Análise Custo-Benefício , Flores , Manipulação de Alimentos , Néctar de Plantas
2.
Glob Chang Biol ; 23(11): 4946-4957, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28488295

RESUMO

Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in-field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in-field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes.


Assuntos
Agricultura/métodos , Artrópodes , Biodiversidade , Ecossistema , Animais
3.
J Anim Ecol ; 86(6): 1404-1416, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28833132

RESUMO

Anthropogenic land use change is an important driver of impacts to biological communities and the ecosystem services they provide. Pollination is one ecosystem service that may be threatened by community disassembly. Relatively little is known about changes in bee community composition in the tropics, where pollination limitation is most severe and land use change is rapid. Understanding how anthropogenic changes alter community composition and functioning has been hampered by high variability in responses of individual species. Trait-based approaches, however, are emerging as a potential method for understanding responses of ecologically similar species to global change. We studied how communities of tropical, eusocial stingless bees (Apidae: Meliponini) disassemble when forest is lost. These bees are vital tropical pollinators that exhibit high trait diversity, but are under considerable threat from human activities. We compared functional traits of stingless bee species found in pastures surrounded by differing amounts of forest in an extensively deforested landscape in southern Costa Rica. Our results suggest that foraging traits modulate competitive interactions that underlie community disassembly patterns. In contrast to both theoretical predictions and temperate bee communities, we found that stingless bee species with the widest diet breadths were less likely to persist in sites with less forest. These wide-diet-breadth species also tend to be solitary foragers, and are competitively subordinate to group-foraging stingless bee species. Thus, displacement by dominant, group-foraging species may make subordinate species more dependent on the larger or more diversified resource pool that natural habitats offer. We also found that traits that may reduce reliance on trees-nesting in the ground or inside nests of other species-correlated with persistence in highly deforested landscapes. The functional trait perspective we employed enabled capturing community processes in analyses and suggests that land use change may disassemble bee communities via different mechanisms in temperate and tropical areas. Our results further suggest that community processes, such as competition, can be important regulators of community disassembly under land use change. A better understanding of community disassembly processes is critical for conserving and restoring pollinator communities and the ecosystem services and functions they provide.


Assuntos
Abelhas/fisiologia , Biota , Conservação dos Recursos Naturais , Agricultura Florestal , Polinização , Animais , Costa Rica , Comportamento Alimentar , Florestas
4.
J Econ Entomol ; 106(4): 1535-44, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24020263

RESUMO

Parasitic Tropilaelaps (Delfinado and Baker) mites are a damaging pest of European honey bees (Apis mellifera L.) in Asia. These mites represent a significant threat if introduced to other regions of the world, warranting implementation of Tropilaelaps mite surveillance in uninfested regions. Current Tropilaelaps mite-detection methods are unsuitable for efficient large scale screening. We developed and tested a new bump technique that consists of firmly rapping a honey bee brood frame over a collecting pan. Our method was easier to implement than current detection tests, reduced time spent in each apiary, and minimized brood destruction. This feasibility increase overcomes the test's decreased rate of detecting infested colonies (sensitivity; 36.3% for the bump test, 54.2% and 56.7% for the two most sensitive methods currently used in Asia). Considering this sensitivity, we suggest that screening programs sample seven colonies per apiary (independent of apiary size) and 312 randomly selected apiaries in a region to be 95% sure of detecting an incipient Tropilaelaps mite invasion. Further analyses counter the currently held view that Tropilaelaps mites prefer drone bee brood cells. Tropilaelaps mite infestation rate was 3.5 +/- 0.9% in drone brood and 5.7 +/- 0.6% in worker brood. We propose the bump test as a standard tool for monitoring of Tropilaelaps mite presence in regions thought to be free from infestation. However, regulators may favor the sensitivity of the Drop test (collecting mites that fall to the bottom of a hive on sticky boards) over the less time-intensive Bump test.


Assuntos
Ácaros e Carrapatos/fisiologia , Criação de Abelhas/métodos , Abelhas/parasitologia , Controle de Ácaros e Carrapatos/métodos , Animais , Abelhas/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/parasitologia , Densidade Demográfica , Pupa/crescimento & desenvolvimento , Pupa/parasitologia , Sensibilidade e Especificidade , Tailândia , Controle de Ácaros e Carrapatos/economia
5.
Sci Data ; 10(1): 747, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919303

RESUMO

Species occurrence data are foundational for research, conservation, and science communication, but the limited availability and accessibility of reliable data represents a major obstacle, particularly for insects, which face mounting pressures. We present BeeBDC, a new R package, and a global bee occurrence dataset to address this issue. We combined >18.3 million bee occurrence records from multiple public repositories (GBIF, SCAN, iDigBio, USGS, ALA) and smaller datasets, then standardised, flagged, deduplicated, and cleaned the data using the reproducible BeeBDC R-workflow. Specifically, we harmonised species names (following established global taxonomy), country names, and collection dates and, we added record-level flags for a series of potential quality issues. These data are provided in two formats, "cleaned" and "flagged-but-uncleaned". The BeeBDC package with online documentation provides end users the ability to modify filtering parameters to address their research questions. By publishing reproducible R workflows and globally cleaned datasets, we can increase the accessibility and reliability of downstream analyses. This workflow can be implemented for other taxa to support research and conservation.


Assuntos
Abelhas , Animais , Editoração , Fluxo de Trabalho
6.
Philos Trans R Soc Lond B Biol Sci ; 375(1802): 20190486, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32420846

RESUMO

Floral communities present complex and shifting resource landscapes for flower-foraging animals. Strong similarities among the floral displays of different plant species, paired with high variability in reward distributions across time and space, can weaken correlations between floral signals and reward status. As a result, it should be difficult for foragers to discriminate between rewarding and rewardless flowers. Building on signal detection theory in behavioural ecology, we use hypothetical probability density functions to examine graphically how plant signals pose challenges to forager decision-making. We argue that foraging costs associated with incorrect acceptance of rewardless flowers and incorrect rejection of rewarding ones interact with community-level reward availability to determine the extent to which rewardless and rewarding species should overlap in flowering time. We discuss the evolutionary consequences of these phenomena from both the forager and the plant perspectives. This article is part of the theme issue 'Signal detection theory in recognition systems: from evolving models to experimental tests'.


Assuntos
Sinais (Psicologia) , Flores/fisiologia , Polinização , Animais , Recompensa
7.
Curr Opin Insect Sci ; 21: 14-18, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28822483

RESUMO

How do animals forage for variable food resources? For animals foraging at flowers, floral constancy has provided a framework for understanding why organisms visit some flowers while bypassing others. We extend this framework to the flower-handling tactics that visitors employ. Nectar robbers remove nectar through holes bitten in flowers, often without pollinating. Many foragers can switch between robbing and visiting flowers legitimately to gain access to nectar. We document that even though individuals can switch foraging tactics, they often do not. We explore whether individuals exhibit constancy to either robbing or visiting legitimately, which we term tactic constancy. We then extend hypotheses of floral constancy to understand when and why visitors exhibit tactic constancy and raise questions for future research.


Assuntos
Comportamento Apetitivo , Insetos/fisiologia , Néctar de Plantas , Animais , Comportamento Animal/fisiologia , Flores , Magnoliopsida , Polinização
8.
PLoS One ; 12(7): e0179535, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28715431

RESUMO

Honey bee (Apis mellifera) colonies continue to experience high annual losses that remain poorly explained. Numerous interacting factors have been linked to colony declines. Understanding the pathways linking pathophysiology with symptoms is an important step in understanding the mechanisms of disease. In this study we examined the specific pathologies associated with honey bees collected from colonies suffering from Colony Collapse Disorder (CCD) and compared these with bees collected from apparently healthy colonies. We identified a set of pathological physical characteristics that occurred at different rates in CCD diagnosed colonies prior to their collapse: rectum distension, Malpighian tubule iridescence, fecal matter consistency, rectal enteroliths (hard concretions), and venom sac color. The multiple differences in rectum symptomology in bees from CCD apiaries and colonies suggest effected bees had trouble regulating water. To ensure that pathologies we found associated with CCD were indeed pathologies and not due to normal changes in physical appearances that occur as an adult bee ages (CCD colonies are assumed to be composed mostly of young bees), we documented the changes in bees of different ages taken from healthy colonies. We found that young bees had much greater incidences of white nodules than older cohorts. Prevalent in newly-emerged bees, these white nodules or cellular encapsulations indicate an active immune response. Comparing the two sets of characteristics, we determined a subset of pathologies that reliably predict CCD status rather than bee age (fecal matter consistency, rectal distension size, rectal enteroliths and Malpighian tubule iridescence) and that may serve as biomarkers for colony health. In addition, these pathologies suggest that CCD bees are experiencing disrupted excretory physiology. Our identification of these symptoms is an important first step in understanding the physiological pathways that underlie CCD and factors impacting bee health.


Assuntos
Envelhecimento , Abelhas/fisiologia , Colapso da Colônia , Animais , Biomarcadores
9.
PLoS One ; 8(7): e70182, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894612

RESUMO

Recent declines in honey bee populations and increasing demand for insect-pollinated crops raise concerns about pollinator shortages. Pesticide exposure and pathogens may interact to have strong negative effects on managed honey bee colonies. Such findings are of great concern given the large numbers and high levels of pesticides found in honey bee colonies. Thus it is crucial to determine how field-relevant combinations and loads of pesticides affect bee health. We collected pollen from bee hives in seven major crops to determine 1) what types of pesticides bees are exposed to when rented for pollination of various crops and 2) how field-relevant pesticide blends affect bees' susceptibility to the gut parasite Nosema ceranae. Our samples represent pollen collected by foragers for use by the colony, and do not necessarily indicate foragers' roles as pollinators. In blueberry, cranberry, cucumber, pumpkin and watermelon bees collected pollen almost exclusively from weeds and wildflowers during our sampling. Thus more attention must be paid to how honey bees are exposed to pesticides outside of the field in which they are placed. We detected 35 different pesticides in the sampled pollen, and found high fungicide loads. The insecticides esfenvalerate and phosmet were at a concentration higher than their median lethal dose in at least one pollen sample. While fungicides are typically seen as fairly safe for honey bees, we found an increased probability of Nosema infection in bees that consumed pollen with a higher fungicide load. Our results highlight a need for research on sub-lethal effects of fungicides and other chemicals that bees placed in an agricultural setting are exposed to.


Assuntos
Abelhas/efeitos dos fármacos , Abelhas/microbiologia , Nosema/patogenicidade , Praguicidas/toxicidade , Polinização , Animais , Suscetibilidade a Doenças/induzido quimicamente , Fungicidas Industriais/toxicidade
10.
Behav Ecol Sociobiol ; 65(4): 763-774, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21475736

RESUMO

Foragers can improve search efficiency, and ultimately fitness, by using social information: cues and signals produced by other animals that indicate food location or quality. Social information use has been well studied in predator-prey systems, but its functioning within a trophic level remains poorly understood. Eavesdropping, use of signals by unintended recipients, is of particular interest because eavesdroppers may exert selective pressure on signaling systems. We provide the most complete study to date of eavesdropping between two competing social insect species by determining the glandular source and composition of a recruitment pheromone, and by examining reciprocal heterospecific responses to this signal. We tested eavesdropping between Trigona hyalinata and Trigona spinipes, two stingless bee species that compete for floral resources, exhibit a clear dominance hierarchy and recruit nestmates to high-quality food sources via pheromone trails. Gas chromatography-mass spectrometry of T. hyalinata recruitment pheromone revealed six carboxylic esters, the most common of which is octyl octanoate, the major component of T. spinipes recruitment pheromone. We demonstrate heterospecific detection of recruitment pheromones, which can influence heterospecific and conspecific scout orientation. Unexpectedly, the dominant T. hyalinata avoided T. spinipes pheromone in preference tests, while the subordinate T. spinipes showed neither attraction to nor avoidance of T. hyalinata pheromone. We suggest that stingless bees may seek to avoid conflict through their eavesdropping behavior, incorporating expected costs associated with a choice into the decision-making process. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00265-010-1080-3) contains supplementary material, which is available to authorized users.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA