Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Plant Cell ; 25(6): 2217-35, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23771894

RESUMO

Many soluble proteins transit through the trans-Golgi network (TGN) and the prevacuolar compartment (PVC) en route to the vacuole, but our mechanistic understanding of this vectorial trafficking step in plants is limited. In particular, it is unknown whether clathrin-coated vesicles (CCVs) participate in this transport step. Through a screen for modified transport to the vacuole (mtv) mutants that secrete the vacuolar protein VAC2, we identified MTV1, which encodes an epsin N-terminal homology protein, and MTV4, which encodes the ADP ribosylation factor GTPase-activating protein nevershed/AGD5. MTV1 and NEV/AGD5 have overlapping expression patterns and interact genetically to transport vacuolar cargo and promote plant growth, but they have no apparent roles in protein secretion or endocytosis. MTV1 and NEV/AGD5 colocalize with clathrin at the TGN and are incorporated into CCVs. Importantly, mtv1 nev/agd5 double mutants show altered subcellular distribution of CCV cargo exported from the TGN. Moreover, MTV1 binds clathrin in vitro, and NEV/AGD5 associates in vivo with clathrin, directly linking these proteins to CCV formation. These results indicate that MTV1 and NEV/AGD5 are key effectors for CCV-mediated trafficking of vacuolar proteins from the TGN to the PVC in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Clatrina/metabolismo , Vacúolos/metabolismo , Rede trans-Golgi/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Proteínas Ativadoras de GTPase , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Immunoblotting , Meristema/genética , Meristema/metabolismo , Meristema/ultraestrutura , Microscopia Confocal , Microscopia Eletrônica , Dados de Sequência Molecular , Mutação , Filogenia , Plantas Geneticamente Modificadas , Ligação Proteica , Transporte Proteico/genética , Homologia de Sequência de Aminoácidos , Vacúolos/ultraestrutura
2.
Nature ; 459(7246): 583-6, 2009 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-19478783

RESUMO

Local hormone maxima are essential for the development of multicellular structures and organs. For example, steroid hormones accumulate in specific cell types of the animal fetus to induce sexual differentiation and concentration peaks of the plant hormone auxin direct organ initiation and mediate tissue patterning. Here we provide an example of a regulated local hormone minimum required during organogenesis. Our results demonstrate that formation of a local auxin minimum is necessary for specification of the valve margin separation layer where Arabidopsis fruit opening takes place. Consequently, ectopic production of auxin, specifically in valve margin cells, leads to a complete loss of proper cell fate determination. The valve margin identity factor INDEHISCENT (IND) is responsible for forming the auxin minimum by coordinating auxin efflux in separation-layer cells. We propose that the simplicity of formation and maintenance make local hormone minima particularly well suited to specify a small number of cells such as the stripes at the valve margins.


Assuntos
Arabidopsis/fisiologia , Ácidos Indolacéticos/metabolismo , Sementes/fisiologia , Arabidopsis/anatomia & histologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transporte Biológico , Frutas/anatomia & histologia , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Serina-Treonina Quinases/genética , Sementes/crescimento & desenvolvimento
3.
BMC Plant Biol ; 14: 195, 2014 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-25038814

RESUMO

BACKGROUND: The sepals, petals and stamens of Arabidopsis flowers detach via abscission zones formed at their boundaries with the underlying receptacle. The ASYMMETRIC LEAVES1 (AS1) MYB transcription factor plays a critical role in setting boundaries between newly formed leaf primordia and the shoot meristem. By repressing expression of a set of KNOTTED1-LIKE HOMEODOMAIN (KNOX) genes from developing leaf primordia, AS1 and its partner ASYMMETRIC LEAVES2 allow the patterning and differentiation of leaves to proceed. Here we show a unique role for AS1 in establishing the positions of the sepal and petal abscission zones in Arabidopsis flowers. RESULTS: In as1 mutant flowers, the sepal abscission zones are displaced into inverted V-shaped positions, leaving behind triangular stubs of tissue when the organs abscise. Movement of the petal abscission zones is also apparent. Abscission of the medial sepals is delayed in as1 flowers; loss of chlorophyll in the senescing sepals contrasts with proximal zones that remain green. AS1 has previously been shown to restrict expression of the KNOX gene, BREVIPEDICELLUS (BP), from the sepals. We show here that loss of BP activity in as1 flowers is sufficient to restore the positions of the sepal and petal abscission zones, the sepal-receptacle boundary of the medial sepals and the timing of their abscission. CONCLUSIONS: Our results indicate that AS1 activity is critical for the proper placement of the floral organ abscission zones, and influences the timing of organ shedding.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Flores/fisiologia , Fatores de Transcrição/fisiologia , Proteínas de Arabidopsis/metabolismo , Códon sem Sentido , Proteínas de Homeodomínio/metabolismo , Estrutura Terciária de Proteína
4.
Development ; 137(3): 467-76, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20081191

RESUMO

Plant cell signaling triggers the abscission of entire organs, such as fruit, leaves and flowers. Previously, we characterized an ADP-ribosylation factor GTPase-activating protein, NEVERSHED (NEV), that regulates membrane trafficking and is essential for floral organ shedding in Arabidopsis. Through a screen for mutations that restore organ separation in nev flowers, we have identified a leucine-rich repeat receptor-like kinase, EVERSHED (EVR), that functions as an inhibitor of abscission. Defects in the Golgi structure and location of the trans-Golgi network in nev abscission zone cells are rescued by a mutation in EVR, suggesting that EVR might regulate membrane trafficking during abscission. In addition to shedding their floral organs prematurely, nev evr flowers show enlarged abscission zones. A similar phenotype was reported for plants ectopically expressing INFLORESCENCE DEFICIENT IN ABSCISSION, a predicted signaling ligand for the HAESA/HAESA-LIKE2 receptor-like kinases, indicating that this signaling pathway may be constitutively active in nev evr flowers. We present a model in which EVR modulates the timing and region of abscission by promoting the internalization of other receptor-like kinases from the plasma membrane.


Assuntos
Proteínas de Arabidopsis/fisiologia , Flores/crescimento & desenvolvimento , Proteínas Quinases/fisiologia , Arabidopsis/fisiologia , Proteínas Ativadoras de GTPase , Proteínas Quinases/metabolismo , Transporte Proteico , Receptores de Superfície Celular/metabolismo
5.
J Exp Bot ; 64(17): 5345-57, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23963677

RESUMO

Floral organ shedding is a cell separation event preceded by cell-wall loosening and generally accompanied by cell expansion. Mutations in NEVERSHED (NEV) or INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) block floral organ abscission in Arabidopsis thaliana. NEV encodes an ADP-ribosylation factor GTPase-activating protein, and cells of nev mutant flowers display membrane-trafficking defects. IDA encodes a secreted peptide that signals through the receptor-like kinases HAESA (HAE) and HAESA-LIKE2 (HSL2). Analyses of single and double mutants revealed unique features of the nev and ida phenotypes. Cell-wall loosening was delayed in ida flowers. In contrast, nev and nev ida mutants displayed ectopic enlargement of abscission zone (AZ) cells, indicating that cell expansion alone is not sufficient to trigger organ loss. These results suggest that NEV initially prevents precocious cell expansion but is later integral for cell separation. IDA is involved primarily in the final cell separation step. A mutation in KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (KNAT1), a suppressor of the ida mutant, could not rescue the abscission defects of nev mutant flowers, indicating that NEV-dependent activity downstream of KNAT1 is required. Transcriptional profiling of mutant AZs identified gene clusters regulated by IDA-HAE/HSL2. Several genes were more strongly downregulated in nev-7 compared with ida and hae hsl2 mutants, consistent with the rapid inhibition of organ loosening in nev mutants, and the overlapping roles of NEV and IDA in cell separation. A model of the crosstalk between the IDA signalling pathway and NEV-mediated membrane traffic during floral organ abscission is presented.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas Ativadoras de GTPase/genética , Regulação da Expressão Gênica de Plantas , Transdução de Sinais , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proliferação de Células , Parede Celular/metabolismo , Regulação para Baixo , Proteínas Ativadoras de GTPase/metabolismo , Perfilação da Expressão Gênica , Inflorescência/anatomia & histologia , Inflorescência/genética , Inflorescência/fisiologia , Modelos Biológicos , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Peptídeos/genética , Peptídeos/metabolismo , Fenótipo , Plantas Geneticamente Modificadas , Transporte Proteico
6.
Plant Physiol ; 156(4): 1837-50, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21628627

RESUMO

Receptor-like kinase-mediated cell signaling pathways play fundamental roles in many aspects of plant growth and development. A pair of Arabidopsis (Arabidopsis thaliana) leucine-rich repeat receptor-like kinases (LRR-RLKs), HAESA (HAE) and HAESA-LIKE2 (HSL2), have been shown to activate the cell separation process that leads to organ abscission. Another pair of LRR-RLKs, EVERSHED (EVR) and SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1, act as inhibitors of abscission, potentially by modulating HAE/HSL2 activity. Cycling of these RLKs to and from the cell surface may be regulated by NEVERSHED (NEV), a membrane trafficking regulator that is essential for organ abscission. We report here the characterization of CAST AWAY (CST), a receptor-like cytoplasmic kinase that acts as a spatial inhibitor of cell separation. Disruption of CST suppresses the abscission defects of nev mutant flowers and restores the discrete identity of the trans-Golgi network in nev abscission zones. After organ shedding, enlarged abscission zones with obscured boundaries are found in nev cst flowers. We show that CST is a dual-specificity kinase in vitro and that myristoylation at its amino terminus promotes association with the plasma membrane. Using the bimolecular fluorescence complementation assay, we have detected interactions of CST with HAE and EVR at the plasma membrane of Arabidopsis protoplasts and hypothesize that CST negatively regulates cell separation signaling directly and indirectly. A model integrating the potential roles of receptor-like kinase signaling and membrane trafficking during organ separation is presented.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/enzimologia , Membrana Celular/enzimologia , Flores/fisiologia , Fosfotransferases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Alelos , Sequência de Aminoácidos , Arabidopsis/fisiologia , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Citoplasma/enzimologia , Flores/citologia , Flores/enzimologia , Flores/ultraestrutura , Modelos Biológicos , Dados de Sequência Molecular , Mutação/genética , Ácido Mirístico/metabolismo , Especificidade de Órgãos , Fosfotransferases/química , Fosfotransferases/genética , Raízes de Plantas/citologia , Raízes de Plantas/enzimologia , Estômatos de Plantas/citologia , Estômatos de Plantas/enzimologia , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Frações Subcelulares/enzimologia , Especificidade por Substrato
7.
Plant J ; 62(5): 817-28, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20230490

RESUMO

Through a sensitized screen for novel components of pathways regulating organ separation in Arabidopsis flowers, we have found that the leucine-rich repeat receptor-like kinase SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 (SERK1) acts as a negative regulator of abscission. Mutations in SERK1 dominantly rescue abscission in flowers without functional NEVERSHED (NEV), an ADP-ribosylation factor GTPase-activating protein required for floral organ shedding. We previously reported that the organization of the Golgi apparatus and location of the trans-Golgi network (TGN) are altered in nev mutant flowers. Disruption of SERK1 restores Golgi structure and the close association of the TGN in nev flowers, suggesting that defects in these organelles may be responsible for the block in abscission. We have also found that the abscission zones of nev serk1 flowers are enlarged compared to wild-type. A similar phenotype was previously observed in plants constitutively expressing a putative ligand required for organ separation, INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), suggesting that signalling through IDA and its proposed receptors, HAESA and HAESA-LIKE2, may be deregulated in nev serk1 abscission zone cells. Our studies indicate that in addition to its previously characterized roles in stamen development and brassinosteroid perception, SERK1 plays a unique role in modulating the loss of cell adhesion that occurs during organ abscission.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Flores/crescimento & desenvolvimento , Proteínas Quinases/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Mapeamento Cromossômico , Flores/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Complexo de Golgi/metabolismo , Microscopia Eletrônica de Transmissão , Mutação , Fenótipo , Proteínas Quinases/genética
8.
Nature ; 424(6944): 85-8, 2003 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-12840762

RESUMO

Carpels are essential for sexual plant reproduction because they house the ovules and subsequently develop into fruits that protect, nourish and ultimately disperse the seeds. The AGAMOUS (AG) gene is necessary for plant sexual reproduction because stamens and carpels are absent from ag mutant flowers. However, the fact that sepals are converted into carpelloid organs in certain mutant backgrounds even in the absence of AG activity indicates that an AG-independent carpel-development pathway exists. AG is a member of a monophyletic clade of MADS-box genes that includes SHATTERPROOF1 (SHP1), SHP2 and SEEDSTICK (STK), indicating that these four genes might share partly redundant activities. Here we show that the SHP genes are responsible for AG-independent carpel development. We also show that the STK gene is required for normal development of the funiculus, an umbilical-cord-like structure that connects the developing seed to the fruit, and for dispersal of the seeds when the fruit matures. We further show that all four members of the AG clade are required for specifying the identity of ovules, the landmark invention during the course of vascular plant evolution that enabled seed plants to become the most successful group of land plants.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Genes de Plantas/genética , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Estruturas Vegetais/crescimento & desenvolvimento , Estruturas Vegetais/genética , Proteína AGAMOUS de Arabidopsis/química , Proteína AGAMOUS de Arabidopsis/genética , Proteína AGAMOUS de Arabidopsis/metabolismo , Alelos , Arabidopsis/anatomia & histologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Proteínas de Domínio MADS/química , Microscopia Eletrônica de Varredura , Morfogênese , Sementes/genética , Sementes/crescimento & desenvolvimento
9.
Curr Opin Plant Biol ; 9(1): 59-65, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16337172

RESUMO

One of the remarkable features of plants is their ability to shed organs, such as leaves, seeds, flowers, and fruit. Genetic analysis of fruit dehiscence and floral organ shedding in Arabidopsis is revealing the pathways that underlie these distinct separation events. The transcriptional network that patterns the fruit links factors that regulate organ polarity and growth with those that control differentiation of the three cell types that are required for dehiscence. Transcriptional regulators that pattern the proximal-distal axis in developing leaves are required for floral organ shedding, and chromatin-modifying complexes might globally regulate genes that affect flower senescence and abscission. Ground-breaking studies have also recently identified a hydrolytic enzyme that is required for microspore separation during pollen development, and the first transcription factor controlling seed abscission.


Assuntos
Flores/fisiologia , Sementes/fisiologia , Flores/citologia , Flores/genética , Regulação da Expressão Gênica de Plantas , Sementes/citologia , Sementes/genética
10.
Front Plant Sci ; 7: 1588, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27818674

RESUMO

An advantage of analyzing abscission in genetically tractable model plants is the ability to make use of classic genetic tools such as suppression analysis. We have investigated the regulation of organ abscission by carrying out suppression analysis in Arabidopsis flowers. Plants carrying mutations in the NEVERSHED (NEV) gene, which encodes an ADP-ribosylation factor GTPase-activating protein, retain their outer floral organs after fertilization. Mutant alleles of CAST AWAY (CST), which encodes a receptor-like cytoplasmic kinase, were found to restore organ abscission in nev flowers in an allele-specific manner. To further explore the basis of the interactions between CST and NEV, we tested whether the site of a nev mutation is predictive of its ability to be suppressed. Our results suggest instead that the strength of a nev allele influences whether organ abscission can be rescued by a specific allele of CST.

11.
Plant Signal Behav ; 9(7): e29115, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25763490

RESUMO

A ligand-receptor module comprised of the peptide inflorescence deficient in abscission (IDA) and the receptor-like kinases HAESA (HAE) and HAESA-LIKE2 (HSL2) activates organ abscission in Arabidopsis flowers. Another set of receptor-like kinases, including EVERSHED (EVR), restricts the extent of cell separation in abscission zones by potentially altering HAE/HSL2 localization or activity. The NEVERSHED (NEV) ADP-ribosylation factor GTPase-activating protein facilitates the intracellular movement of molecules required for organ abscission and fruit growth. Here we report further analysis of the relationship between NEV-mediated intracellular traffic, EVR activity and IDA-HAE/HSL2 signaling during flower development. Our results support a model in which cell separation is mediated by HAE/HSL2 signaling downstream of NEV and EVR. We discuss the possibility that conserved circuits control organ abscission and modulate fruit growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Senescência Celular , Flores/metabolismo , Frutas/crescimento & desenvolvimento , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Desenvolvimento Vegetal
12.
Curr Opin Plant Biol ; 15(6): 670-6, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23047135

RESUMO

Flowers are frequently programmed to release their outer organs after pollination. Managing the timing and extent of cell separation during abscission is crucial, as premature shedding could interfere with reproduction and the structural integrity of neighboring tissues would be affected by uninhibited loss of cellular adhesion. In Arabidopsis flowers, the framework of the cell signaling, membrane traffic and transcriptional networks responsible for organ abscission is now emerging. A proposed ligand-receptor system consisting of a secreted peptide and a pair of redundant receptor-like kinases switches on a mitogen-activated protein kinase cascade that leads to cell separation. A homeodomain transcription factor acting downstream of the ligand-receptor module may inhibit cell expansion and separation by restricting the expression of other closely related transcription factors. Three additional receptor-like kinases may inhibit abscission by reducing the pool of receptors at the cell surface available to be ligand-activated. A G-protein regulator is required to direct the movement of key molecules required for abscission. Expression of a polygalaturonase active during organ abscission is modulated by a zinc finger transcription factor.


Assuntos
Arabidopsis/metabolismo , Flores/fisiologia , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Ativação Enzimática , Flores/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Complexo de Golgi/metabolismo , Células Vegetais/metabolismo , Células Vegetais/fisiologia , Fenômenos Fisiológicos Vegetais , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transporte Proteico , Fatores de Tempo , Transcrição Gênica
13.
Development ; 136(11): 1909-18, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19429787

RESUMO

Cell separation, or abscission, is a highly specialized process in plants that facilitates remodeling of their architecture and reproductive success. Because few genes are known to be essential for organ abscission, we conducted a screen for mutations that alter floral organ shedding in Arabidopsis. Nine recessive mutations that block shedding were found to disrupt the function of an ADP-ribosylation factor-GTPase-activating protein (ARF-GAP) we have named NEVERSHED (NEV). As predicted by its homology to the yeast Age2 ARF-GAP and transcriptional profile, NEV influences other aspects of plant development, including fruit growth. Co-localization experiments carried out with NEV-specific antiserum and a set of plant endomembrane markers revealed that NEV localizes to the trans-Golgi network and endosomes in Arabidopsis root epidermal cells. Interestingly, transmission electron micrographs of abscission zone regions from wild-type and nev flowers reveal defects in the structure of the Golgi apparatus and extensive accumulation of vesicles adjacent to the cell walls. Our results suggest that NEV ARF-GAP activity at the trans-Golgi network and distinct endosomal compartments is required for the proper trafficking of cargo molecules required for cell separation.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Endossomos/fisiologia , Flores/fisiologia , Proteínas Ativadoras de GTPase/fisiologia , Complexo de Golgi/fisiologia , Sequência de Aminoácidos , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Transporte Biológico , Flores/ultraestrutura , Proteínas Ativadoras de GTPase/genética , Complexo de Golgi/ultraestrutura , Membranas Intracelulares/metabolismo , Dados de Sequência Molecular , Mutação
14.
Plant Physiol ; 139(1): 52-63, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16113212

RESUMO

During senescence, chlorophyll (chl) is metabolized to colorless nonfluorescent chl catabolites (NCCs). A central reaction of the breakdown pathway is the ring cleavage of pheophorbide (pheide) a to a primary fluorescent chl catabolite. Two enzymes catalyze this reaction, pheide a oxygenase (PAO) and red chl catabolite reductase. Five NCCs and three fluorescent chl catabolites (FCCs) accumulated during dark-induced chl breakdown in Arabidopsis (Arabidopsis thaliana). Three of these NCCs and one FCC (primary fluorescent chl catabolite-1) were identical to known catabolites from canola (Brassica napus). The presence in Arabidopsis of two modified FCCs supports the hypothesis that modifications, as present in NCCs, occur at the level of FCC. Chl degradation in Arabidopsis correlated with the accumulation of FCCs and NCCs, as well as with an increase in PAO activity. This increase was due to an up-regulation of Pao gene expression. In contrast, red chl catabolite reductase is not regulated during leaf development and senescence. A pao1 knockout mutant was identified and analyzed. The mutant showed an age- and light-dependent cell death phenotype on leaves and in flowers caused by the accumulation of photoreactive pheide a. In the dark, pao1 exhibited a stay-green phenotype. The key role of PAO in chl breakdown is discussed.


Assuntos
Arabidopsis/enzimologia , Clorofila/análogos & derivados , Clorofila/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Morte Celular , Clorofila/química , DNA Bacteriano/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Luz , Estrutura Molecular , Mutagênese Insercional/genética , Oxirredutases/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Fenótipo , Folhas de Planta/enzimologia , Fatores de Tempo
15.
Plant Physiol ; 138(2): 990-7, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15908595

RESUMO

Classical forward genetics, the identification of genes responsible for mutant phenotypes, remains an important part of functional characterization of the genome. With the advent of extensive genome sequence, phenotyping and genotyping remain the critical limiting variables in the process of map-based cloning. Here, we reduce the genotyping problem by hybridizing labeled genomic DNA to the Affymetrix Arabidopsis (Arabidopsis thaliana) ATH1 GeneChip. Genotyping was carried out on the scale of detecting greater than 8,000 single feature polymorphisms from over 200,000 loci in a single assay. By combining this technique with bulk segregant analysis, several high heritability development and circadian clock traits were mapped. The mapping accuracy using bulk pools of 26 to 100 F(2) individuals ranged from 0.22 to 1.96 Mb of the mutations revealing mutant alleles of EARLY FLOWERING 3, EARLY FLOWERING 4, TIMING OF CAB EXPRESSION 1, and ASYMMETRIC LEAVES 1. While direct detection of small mutations, such as an ethyl-methane sulfonate derived single base substitutions, is limited by array coverage and sensitivity, large deletions such as those that can be caused by fast neutrons are easily detected. We demonstrate this by resolving two deletions, the 77-kb flavin-binding, kelch repeat, f-box 1 and the 7-kb cryptochrome2-1 deletions, via direct hybridization of mutant DNA to ATH1 expression arrays.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Ritmo Circadiano , Análise de Sequência com Séries de Oligonucleotídeos , Mapeamento Cromossômico , Cromossomos de Plantas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genótipo , Mutação , Fenótipo
16.
Planta ; 214(3): 365-72, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11855641

RESUMO

Although MADS-box genes involved in flower and fruit development have been well characterized, the function of MADS-box genes expressed in vegetative structures has yet to be explored. At least seven members of this family are grouped in clades of genes that are preferentially expressed in roots of Arabidopsis thaliana (L.) Heynh.. We report here the cloning of the AGL21 MADS-box gene, which belongs to the ANR1 clade, and the mRNA in situ expression patterns of this and two other root MADS-box genes. AGL17 appears to be a lateral root cap marker in the root tip, and towards the elongation zone this gene is expressed in the epidermal cells. AGL21 is highly expressed in lateral root primordia and it has a punctate expression pattern in the primary root meristem. AGL12 also has a punctate expression pattern in the primary root meristem. AGL12 and AGL21 are also expressed in the central cylinder of differentiated roots and both are expressed in developing embryos. This study, combined with previous phylogenetic analyses, indicates that these MADS-box genes may play distinct regulatory roles during root development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Domínio MADS/genética , Meristema/genética , Raízes de Plantas/genética , Arabidopsis/crescimento & desenvolvimento , Diferenciação Celular/genética , Clonagem Molecular , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Meristema/crescimento & desenvolvimento , Dados de Sequência Molecular , Família Multigênica/genética , Raízes de Plantas/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento
17.
Cell ; 116(6): 843-53, 2004 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-15035986

RESUMO

The Arabidopsis seedpod opens through a spring-loaded mechanism known as pod shatter, which is essential for dispersal of the seeds. Here, we identify INDEHISCENT (IND), an atypical bHLH protein, that is necessary for fruit opening and is involved in patterning each of the three fruit cell types required for seed dispersal. Previous studies suggested that FRUITFULL (FUL), a member of the MADS-domain transcription factor family, is required for fruit growth since ful mutant fruit fail to undergo the dramatic enlargement that normally occurs after fertilization. Here we show, however, that FUL is not directly required for fruit elongation and instead is required to prevent ectopic activity of IND. Our molecular and genetic studies suggest a model for the regulatory interactions among the genes that control fruit development and the mechanism that results in the expression of IND in a narrow stripe of cells.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas/genética , Sementes/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Arabidopsis/metabolismo , Sequência de Bases/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Diferenciação Celular/genética , DNA Complementar/análise , DNA Complementar/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Sequências Hélice-Alça-Hélice/genética , Dados de Sequência Molecular , Morfogênese/genética , Mutação/genética , Fenótipo , Reprodução/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA