Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37124157

RESUMO

Sorafenib, marketed under the brand name Nexavar®, is a multiple tyrosine kinase inhibitor drug that has been actively used in the clinical setting for the treatment of several cancers. However, the low solubility and bioavailability of sorafenib constitute a significant barrier to achieving a good therapeutic outcome. We developed a sorafenib-loaded self-nanoemulsifying drug delivery system (SNEDDS) formulation composed of capmul MCM, tween 80, and tetraglycol, and demonstrated that the SNEDDS formulation could improve drug solubility with excellent self-emulsification ability. Moreover, the sorafenib-loaded SNEDDS exhibited anticancer activity against Hep3B and KB cells, which are the most commonly used hepatocellular carcinoma and oral cancer cell lines, respectively. Subsequently, to improve the storage stability and to increase the possibility of commercialization, a solid SNEDDS for sorafenib was further developed through the spray drying method using Aerosil® 200 and PVP K 30. X-ray diffraction and differential scanning calorimeter data showed that the crystallinity of the drug was markedly reduced, and the dissolution rate of the drug was further improved in formulation in simulated gastric and intestinal fluid conditions. In vivo study, the bioavailability of the orally administered formulation increases dramatically compared to the free drug. Our results highlight the use of the solid-SNEDDS formulation to enhance sorafenib's bioavailability and outlines potential translational directions for oral drug development.

2.
Small ; 18(4): e2103552, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34841670

RESUMO

Significant advances in physicochemical properties of polymeric micelles enable optimization of therapeutic drug efficacy, supporting nanomedicine manufacturing and clinical translation. Yet, the effect of micelle morphology on pharmacological efficacy is not adequately addressed. This work addresses this gap by assessing pharmacological efficacy of polymeric micelles with spherical and worm-like morphologies. It is observed that poly(2-oxazoline)-based polymeric micelles can be elongated over time from a spherical structure to worm-like structure, with elongation influenced by several conditions, including the amount and type of drug loaded into the micelles. The role of different morphologies on pharmacological performance of drug loaded micelles against triple-negative breast cancer and pancreatic cancer tumor models is further evaluated. Spherical micelles accumulate rapidly in the tumor tissue while retaining large amounts of drug; worm-like micelles accumulate more slowly and only upon releasing significant amounts of drug. These findings suggest that the dynamic character of the drug-micelle structure and the micelle morphology play a critical role in pharmacological performance, and that spherical micelles are better suited for systemic delivery of anticancer drugs to tumors when drugs are loosely associated with the polymeric micelles.


Assuntos
Antineoplásicos , Micelas , Antineoplásicos/uso terapêutico , Portadores de Fármacos/química , Nanomedicina , Polímeros/química
3.
Ecotoxicol Environ Saf ; 232: 113252, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35104780

RESUMO

11 S, 17S-dihydroxy 7,9,13,15,19 (Z,E,Z,E,Z)-docosapentaenoic acid (DoPE) is a derivative of docosapentaenoic acid, a specialized pro-resolving mediator of inflammation such as lipoxins, resolvins, maresins, and protectins. PM10 is a fine dust particle that induces oxidative stress, DNA damage, inflammation, aging, and cancer. The anti-inflammatory mechanism of DoPE, however, has not yet been elucidated. In these studies, we investigated whether DoPE has anti-inflammatory effects in human keratinocyte HaCaT cells. We demonstrated that DoPE suppressed PM10-induced expressions of IL-6 mRNA and protein in human HaCaT keratinocytes. We also investigated the modulating effects of DoPE on reactive oxygen species (ROS) and mitogen-activated protein kinase (MAPK). ROS production, extracellular signal regulated kinase (ERK) phosphorylation, and translocation of nuclear factor-kappa B (NF-kB) p65 and NF-kB activity were suppressed by DoPE in PM10-stimulated HaCaT cells. Collectively, our results demonstrated that DoPE inhibited IL-6 expression by reducing ROS generation, suppressing ERK phosphorylation, and inhibiting translocation of NF-kB p65 and NF-kB activity in PM10-stimulated HaCaT cells, suggesting that DoPE can be useful for the resolution of the inflammation caused by IL-6.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , NF-kappa B , Poeira , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Ácidos Graxos Insaturados , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Queratinócitos , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
Nanomedicine ; 32: 102345, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33259959

RESUMO

We report a nanoparticle formulation of the SHH-pathway inhibitor vismodegib that improves efficacy for medulloblastoma, while reducing toxicity. Limited blood-brain barrier (BBB) penetration and dose-limiting extitle/citraneural toxicities complicate systemic therapies for brain tumors. Vismodegib is FDA-approved for SHH-driven basal cell carcinoma, but implementation for medulloblastoma has been limited by inadequate efficacy and excessive bone toxicity. To address these issues through optimized drug delivery, we formulated vismodegib in polyoxazoline block copolymer micelles (POx-vismo). We then evaluated POx-vismo in transgenic mice that develop SHH-driven medulloblastomas with native vasculature and tumor microenvironment. POx-vismo improved CNS pharmacokinetics and reduced bone toxicity. Mechanistically, the nanoparticle carrier did not enter the CNS, and acted within the vascular compartment to improve drug delivery. Unlike conventional vismodegib, POx-vismo extended survival in medulloblastoma-bearing mice. Our results show the broad potential for non-targeted nanoparticle formulation to improve systemic brain tumor therapy, and specifically to improve vismodegib therapy for SHH-driven cancers.


Assuntos
Anilidas/farmacocinética , Anilidas/uso terapêutico , Sistema Nervoso Central/patologia , Neoplasias Cerebelares/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Meduloblastoma/tratamento farmacológico , Nanopartículas/química , Oxazóis/química , Piridinas/farmacocinética , Piridinas/uso terapêutico , Anilidas/efeitos adversos , Anilidas/farmacologia , Animais , Disponibilidade Biológica , Modelos Animais de Doenças , Portadores de Fármacos/química , Camundongos , Micelas , Tamanho da Partícula , Ligação Proteica , Piridinas/efeitos adversos , Piridinas/farmacologia , Albumina Sérica/metabolismo
5.
AAPS PharmSciTech ; 22(5): 169, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34080086

RESUMO

Lutein has been used as a dietary supplement for the treatment of eye diseases, especially age-related macular degeneration. For oral formulations, we investigated lutein stability in artificial set-ups mimicking different physiological conditions and found that lutein was degraded over time under acidic conditions. To enhance the stability of lutein upon oral intake, we developed enteric-coated lutein solid dispersions (SD) by applying a polymer, hydroxypropyl methylcellulose acetate succinate (HPMCAS-LF), through a solvent-controlled precipitation method. The SD were characterized in crystallinity, morphology, and drug entrapment. In the dissolution profile of lutein SD, a F80 formulation showed resistance toward the acidic environment under simulated gastric conditions while exhibiting a bursting drug release under simulated intestinal conditions. Our results highlight the potential use of HPMCAS-LF as an effective matrix to enhance lutein bioavailability during oral delivery and to provide novel insights into the eye-care supplement industry, with direct benefits for the health of patients.


Assuntos
Luteína/síntese química , Luteína/farmacocinética , Metilcelulose/análogos & derivados , Disponibilidade Biológica , Cromatografia Líquida de Alta Pressão/métodos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Humanos , Metilcelulose/síntese química , Metilcelulose/farmacocinética , Polímeros/síntese química , Polímeros/farmacocinética , Solubilidade , Solventes , Difração de Raios X/métodos
6.
Org Biomol Chem ; 15(19): 4096-4114, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28352916

RESUMO

The turnstile motion of two neighboring threonines sets up a dynamic side chain interplay that can accommodate both polar and apolar ligands in a small molecule allosteric protein binding site. A computational model based on SAR data and both X-ray and cryo-EM structures of the AAA ATPase p97 was used to analyze the effects of paired threonines at the inhibitor site. Specifically, the Thr side chain hydroxyl groups form a hydrogen bonding network that readily accommodates small, highly polar ligand substituents. Conversely, diametric rotation of the χ1 torsion by 150-180° orients the side chain ß-methyl groups into the binding cleft, creating a hydrophobic pocket that can accommodate small, apolar substituents. This motif was found to be critical for rationalizing the affinities of a structurally focused set of inhibitors of p97 covering a > 2000-fold variation in potencies, with a preference for either small-highly polar or small-apolar groups. The threonine turnstile motif was further validated by a PDB search that identified analogous binding modes in ligand interactions in PKB, as well as by an analysis of NMR structures demonstrating additional gear-like interactions between adjacent Thr pairs. Combined, these data suggest that the threonine turnstile motif may be a general feature of interest in protein binding pockets.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Sítio Alostérico , Interações Hidrofóbicas e Hidrofílicas , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Treonina , Motivos de Aminoácidos , Ligantes , Modelos Moleculares , Ligação Proteica
7.
Bioorg Med Chem Lett ; 25(21): 4828-4833, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26159482

RESUMO

Mitochondria play important roles in tumor cell physiology and survival by providing energy and metabolites for proliferation and metastasis. As part of their oncogenic status, cancer cells frequently produce increased levels of mitochondrial-generated reactive oxygen species (ROS). However, extensive stimulation of ROS generation in mitochondria has been shown to be able to induce cancer cell death, and is one of the major mechanisms of action of many anticancer agents. We hypothesized that enhancing mitochondrial ROS generation through direct targeting of a ROS generator into mitochondria will exhibit tumor cell selectivity, as well as high efficacy in inducing cancer cell death. We thus synthesized a mitochondrial targeted version of ß-lapachone (XJB-Lapachone) based on our XJB mitochondrial targeting platform. We found that the mitochondrial targeted ß-lapachone is more efficient in inducing apoptosis compared to unconjugated ß-lapachone, and the tumor cell selectivity is maintained. XJB-Lapachone also induced extensive cellular vacuolization and autophagy at a concentration not observed with unconjugated ß-lapachone. Through characterization of mitochondrial function we revealed that XJB-Lapachone is indeed more capable of stimulating ROS generation in mitochondria, which led to a dramatic mitochondrial uncoupling and autophagic degradation of mitochondria. Taken together, we have demonstrated that targeting ß-lapachone accomplishes higher efficacy through inducing ROS generation directly in mitochondria, resulting in extensive mitochondrial and cellular damage. XJB-Lapachone will thus help to establish a novel platform for the design of next generation mitochondrial targeted ROS generators for cancer therapy.


Assuntos
Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Naftoquinonas/farmacologia , Neoplasias/patologia , Vacúolos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Mitocôndrias/metabolismo , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
8.
Int J Nanomedicine ; 19: 1767-1807, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414526

RESUMO

Addressing disorders related to the central nervous system (CNS) remains a complex challenge because of the presence of the blood-brain barrier (BBB), which restricts the entry of external substances into the brain tissue. Consequently, finding ways to overcome the limited therapeutic effect imposed by the BBB has become a central goal in advancing delivery systems targeted to the brain. In this context, the intranasal route has emerged as a promising solution for delivering treatments directly from the nose to the brain through the olfactory and trigeminal nerve pathways and thus, bypassing the BBB. The use of lipid-based nanoparticles, including nano/microemulsions, liposomes, solid lipid nanoparticles, and nanostructured lipid carriers, has shown promise in enhancing the efficiency of nose-to-brain delivery. These nanoparticles facilitate drug absorption from the nasal membrane. Additionally, the in situ gel (ISG) system has gained attention owing to its ability to extend the retention time of administered formulations within the nasal cavity. When combined with lipid-based nanoparticles, the ISG system creates a synergistic effect, further enhancing the overall effectiveness of brain-targeted delivery strategies. This comprehensive review provides a thorough investigation of intranasal administration. It delves into the strengths and limitations of this specific delivery route by considering the anatomical complexities and influential factors that play a role during dosing. Furthermore, this study introduces strategic approaches for incorporating nanoparticles and ISG delivery within the framework of intranasal applications. Finally, the review provides recent information on approved products and the clinical trial status of products related to intranasal administration, along with the inclusion of quality-by-design-related insights.


Assuntos
Lipossomos , Nanopartículas , Administração Intranasal , Barreira Hematoencefálica , Encéfalo , Sistemas de Liberação de Medicamentos , Lipídeos , Lipossomos/farmacologia , Mucosa Nasal/metabolismo
9.
J Microbiol Biotechnol ; 34(3): 506-515, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37994116

RESUMO

Primary human dermal papilla cells (HDPCs) are often preferred in studies on hair growth and regeneration. However, primary HDPCs are limited by their reduced proliferative capacity, decreased hair induction potential, and extended doubling times at higher passages. To overcome these limitations, pTARGET vectors containing human papillomavirus16 (HPV16) E6/E7 oncogenes were transfected into HDPCs and selected using G-148 to generate immortalized cells here. HPV16 E6/E7 oncogenes were efficiently transfected into primary HDPCs. Immortalized HDPC showed higher proliferative activity than primary HDPC, confirming an increased proliferation rate. Expression of p53 and pRb proteins was downregulated by E6 and E7, respectively. E6/E7 expressing HDPC cells revealed that cyclin-dependent kinase (CDK) inhibitor p21 expression was decreased, while cell cycle-related genes and proteins (CDK2 and cyclin E) and E2F family genes were upregulated. Immortalized HDPCs maintained their responsiveness to Wnt/ß-catenin pathway and hair follicle formation capability, as indicated by their aggregative properties and stemness. E6/E7 immortalized HDPCs may facilitate in vitro hair growth and regeneration studies.


Assuntos
Papillomavirus Humano 16 , Proteínas Oncogênicas Virais , Humanos , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/genética , Papillomaviridae/genética , Papillomaviridae/metabolismo
10.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559220

RESUMO

Infiltration of immunosuppressive cells into the breast tumor microenvironment (TME) is associated with suppressed effector T cell (Teff) responses, accelerated tumor growth, and poor clinical outcomes. Previous studies from our group and others identified infiltration of immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) as critical contributors to immune dysfunction in the orthotopic triple-negative breast cancer (TNBC) tumor model limiting the efficacy of adoptive cellular therapy. However, approaches to target these cells specifically in the TME are currently lacking. To overcome this barrier, polymeric micelles nanoparticles (PMNPs) were used for co-delivery of small molecule drugs activating Toll-like receptors 7 and 8 (TLR7/8) and inhibiting PI3K delta. The immunomodulation of the TME by TLR7/8 agonist and PI3K inhibitor altered macrophage polarization, reduced MDSC accumulation and selectively decreased tissue-resident Tregs in the TME, while enhancing the T and B cell adaptive immune response. PMNPs significantly enhanced the anti-tumor activity of local radiation therapy (RT) in mice bearing orthotopic TNBC tumors compared to RT alone. Taken together, these data demonstrate that RT combined with a nanoformulated immunostimulant restructured the TME and has promising potential for future translation combined with RT for patients with TNBC.

11.
Bioconjug Chem ; 24(8): 1324-31, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23926922

RESUMO

The sphingolipid metabolites have emerged as a starting point for the development of novel therapeutics for many diseases. However, details of the functions and mechanisms of sphingolipids remain unknown. To better understand the roles of sphingolipids, chemical tools with unique biological and physicochemical properties are needed. In this regard, we previously reported the synthesis of sphingoid base analogues in which the carbon chains are restricted by triple bonds. Here, we have conjugated a fluorescent dye to the polyyne analogues of the sphingoid bases to generate optical probes. Like the parent polyyne-containing sphingoid base, the 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)-labeled triyne-sphingosine inhibited cancer cell growth far more effectively than did the corresponding sphingosine. NBD-triyne-sphingosine was rapidly incorporated into the cells and displayed broad cytoplasmic distribution. According to the results of a flow cytometric analysis, cancer cells fed with NBD-triyne-sphingosine showed significantly increased fluorescence intensity compared with the NBD-sphingosine treated cells. The metabolism of NBD-triyne-sphingosine was somewhat different from that of NBD-sphingosine. These results indicated that the incorporated rigid polyyne moiety in the sphingoid base altered the physicochemical properties of the sphingolipid, thereby affecting its biological behavior. The higher antiproliferative activity in the SRB assay and the significantly higher fluorescence intensity observed in the flow cytometric analysis are some of the interesting and distinct aspects of NBD-triyne-sphingosine compared to standard NBD-sphingosine probes. Thus, it is believed that the fluorescently labeled polyyne-containing sphingoid base developed in this study will be a useful chemical tool in sphingolipid research.


Assuntos
Poli-Inos/química , Esfingolipídeos/química , Esfingolipídeos/síntese química , Transporte Biológico , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Sintética , Desenho de Fármacos , Células HCT116 , Humanos , Nitrobenzenos/química , Esfingolipídeos/metabolismo , Esfingolipídeos/farmacologia
12.
Int J Pharm ; 639: 122942, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37037397

RESUMO

Lipid drug conjugates (LDCs) have attracted considerable attention in the fields of drug delivery and pharmacology due to their ability to target specific cells, increase drug solubility, reduce toxicity, and improve therapeutic efficacy. These unique features make LDCs promising candidates for the treatment cancer, inflammation, and infectious diseases. In fact, by choosing specific linkers between the lipid and drug molecules, stimuli-responsive LDCs can be designed to target cancer cells based on the unique properties of the tumor microenvironment. Despite the fact that many reviews have described LDCs, few articles have focused on tumor microenvironmental stimuli-responsive LDCs for cancer treatment. Therefore, the key elements of these types of LDCs in cancer treatment will be outlined and discussed in this paper. Our paper goes into detail on the concepts and benefits of LDCs, the various types of tumor microenvironment stimuli-responsive LDCs (such as pH, redox, enzyme, or reactive oxygen species-responsive LDCs), and the current status of LDCs in clinical trials.


Assuntos
Neoplasias , Pró-Fármacos , Humanos , Microambiente Tumoral , Sistemas de Liberação de Medicamentos , Pró-Fármacos/química , Neoplasias/tratamento farmacológico , Lipídeos/química
13.
Front Immunol ; 14: 1160301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228610

RESUMO

Interleukin-32 (IL-32), first reported in 2005, and its isoforms have been the subject of numerous studies investigating their functions in virus infection, cancer, and inflammation. IL-32θ, one of the IL-32 isoforms, has been shown to modulate cancer development and inflammatory responses. A recent study identified an IL-32θ mutant with a cytosine to thymine replacement at position 281 in breast cancer tissues. It means that alanine was also replaced to valine at position 94 in amino acid sequence (A94V). In this study, we investigated the cell surface receptors of IL-32θA94V and evaluated their effect on human umbilical vein endothelial cells (HUVECs). Recombinant human IL-32θA94V was expressed, isolated, and purified using Ni-NTA and IL-32 mAb (KU32-52)-coupled agarose columns. We observed that IL-32θA94V could bind to the integrins αVß3 and αVß6, suggesting that integrins act as cell surface receptors for IL-32θA94V. IL-32θA94V significantly attenuated monocyte-endothelial adhesion by inhibiting the expression of Intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor (TNF)-α-stimulated HUVECs. IL-32θA94V also reduced the TNF-α-induced phosphorylation of protein kinase B (AKT) and c-jun N-terminal kinases (JNK) by inhibiting phosphorylation of focal adhesion kinase (FAK). Additionally, IL-32θA94V regulated the nuclear translocation of nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1), which are involved in ICAM-1 and VCAM-1 expression. Monocyte-endothelial adhesion mediated by ICAM-1 and VCAM-1 is an important early step in atherosclerosis, which is a major cause of cardiovascular disease. Our findings suggest that IL-32θA94V binds to the cell surface receptors, integrins αVß3 and αVß6, and attenuates monocyte-endothelial adhesion by suppressing the expression of ICAM-1 and VCAM-1 in TNF-α-stimulated HUVECs. These results demonstrate that IL-32θA94V can act as an anti-inflammatory cytokine in a chronic inflammatory disease such as atherosclerosis.


Assuntos
Aterosclerose , Molécula 1 de Adesão de Célula Vascular , Humanos , Aterosclerose/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Integrina alfaVbeta3/genética , Integrina alfaVbeta3/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Monócitos/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
14.
J Control Release ; 359: 52-68, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37220804

RESUMO

The combination of photothermal therapy and chemotherapy has been considered a promising strategy for improving the excellent antitumor activities of these treatments. In this study, we developed a new simple type of pH-sensitive chemo-photothermal combination agent capable of repeated exposures to a near-infrared (NIR) laser and evaluated its anticancer efficacy in vitro and in vivo. Doxorubicin (Dox) and gold nanoclusters (GNCs) were successfully co-loaded into pH-sensitive nanoparticles (poly(ethylene glycol)-poly[(benzyl-l-aspartate)-co-(N-(3-aminopropyl)imidazole-L-aspartamide)] (PEG-PABI)), resulting in a particle size of approximately120 nm with a narrow size distribution. The dual drug-loaded nanoparticles (Dox/GNC-loaded PEG-PABI micelles (Dox/GNC-Ms)) showed consistent pH-sensitive properties and heat generation efficiency after repeated NIR laser exposure. In particular, GNC-M has improved photothermal stability while maintaining high photothermal conversion efficiency, addressing the shortcomings of previous gold nanoparticles. As the concentration of GNC-Ms, irradiation light exposure time, and light source intensity increased, the amount of heat generated and the anticancer effect increased. When Dox was encapsulated with GNCs (Dox/GNC-Ms), a faster drug release rate under acidic pH conditions and a strong synergistic effect against U87MG cells were observed. When the Dox/GNC-M system was extended to in vivo studies, it effectively increased the temperature of the tumor tissue under near-infrared irradiation and showed excellent anticancer efficacy. Therefore, the Dox/GNC-M system could be a simple but promising strategy for chemo-photothermal combination treatment capable of targeting acidic tumors.


Assuntos
Hipertermia Induzida , Nanopartículas Metálicas , Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Ouro/química , Hipertermia Induzida/métodos , Nanopartículas Metálicas/química , Fototerapia/métodos , Neoplasias/tratamento farmacológico , Doxorrubicina/química , Nanopartículas/química , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral
15.
Int Immunopharmacol ; 120: 110298, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37207444

RESUMO

Chronic skin inflammatory diseases are associated with abnormal immune responses characterized by skin barrier dysfunction. Keratinocytes participate in immune homeostasis regulated by immune cells. Immune homeostasis dysfunction contributes to the pathogenesis of skin diseases mediated by pro-inflammatory cytokines and chemokines, such as tumor necrosis factor (TNF)-α, which are produced by activated keratinocytes. 12(S)-Hydroxy eicosatetraenoic acid [12(S)-HETE], an arachidonic acid metabolite, has anti-inflammatory properties. However, the role of 12(S)-HETE in chronic skin inflammatory diseases has not been elucidated yet. In this study, we investigated the effect of 12(S)-HETE on TNF-α/interferon (IFN)-γ-induced pro-inflammatory cytokine and chemokine expression. Our data showed that 12(S)-HETE modulates TNF-α mRNA and protein expression in TNF-α-/IFN-γ-treated human keratinocytes. Molecular docking analyses demonstrated that 12(S)-HETE bound to extracellular signal-regulated kinase (ERK)1/2, thus preventing ERK activation and downregulating phosphorylated ERK expression. We also demonstrated that 12(S)-HETE treatment inhibited IκB and ERK phosphorylation and nuclear factor (NF)-κB, p65/p50, and CCAAT/enhancerbindingproteinß (C/EBPß) translocation. Overall, our results showed that 12(S)-HETE attenuated TNF-α expression and secretion by inhibiting the mitogen-activated protein kinase ERK/NF-κB and C/EBPß signaling pathways. Overall, these results suggest that 12(S)-HETE effectively resolved TNF-α-induced inflammation.


Assuntos
Queratinócitos , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Simulação de Acoplamento Molecular , Interferon gama/farmacologia , Interferon gama/metabolismo , Citocinas/metabolismo , NF-kappa B/metabolismo , Quimiocinas/metabolismo , Ácidos Hidroxieicosatetraenoicos/farmacologia , Ácidos Hidroxieicosatetraenoicos/metabolismo , Ácidos Graxos/farmacologia
16.
Int J Nanomedicine ; 18: 1615-1630, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020691

RESUMO

Introduction: Ligand-conjugated liposomes are promising for the treatment of specific receptor-overexpressing cancers. However, previous studies have shown inconsistent results because of the varying properties of the ligand, presence of a polyethylene glycol (PEG) coating on the liposome, length of the linker, and density of the ligand. Methods: Here, we prepared PEGylated liposomes using PEG-linkers of various lengths conjugated with folate and evaluated the effect of the PEG-linker length on the nanoparticle distribution and pharmacological efficacy of the encapsulated drug both in vitro and in vivo. Results: When folate was conjugated to the liposome surface, the cellular uptake efficiency in folate receptor overexpressed KB cells dramatically increased compared to that of the normal liposome. However, when comparing the effect of the PEG-linker length in vitro, no significant difference between the formulations was observed. In contrast, the level of tumor accumulation of particles in vivo significantly increased when the length of the PEG-linker was increased. The tumor size was reduced by >40% in the Dox/FL-10K-treated group compared to that in the Dox/FL-2K- or 5K-treated groups. Discussion: Our study suggests that as the length of PEG-linker increases, the tumor-targeting ability can be enhanced under in vivo conditions, which can lead to an increase in the antitumor activity of the encapsulated drug.


Assuntos
Ácido Fólico , Lipossomos , Humanos , Ligantes , Polietilenoglicóis , Composição de Medicamentos
17.
Phytomedicine ; 112: 154685, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36753827

RESUMO

BACKGROUND: Cinnamomum verum J. Presl (Cinnamon) is widely used in the food and pharmaceutical industries. C. verum exhibits various biological activities. However, it is unclear whether C. verum can inhibit NOX, a major source of ROS generation, and exert anti-inflammatory and antioxidant effects in PMA-stimulated THP-1 cells. PURPOSE: This study investigates the anti-inflammatory and antioxidant effects of C. verum in PMA-stimulated THP-1 cells. METHODS: The MeOH extract of C. verum was analyzed using UPLC-QTOF/MS. Anti-inflammatory and antioxidant effects of C. verum extract were examined by DCF-DA staining, immunofluorescence staining, RT-PCR, and immunoblotting in PMA-stimulated THP-1 cells. RESULTS: C. verum and its components, cinnamic acid and coumarin, significantly attenuated the expression of IL-1ß, IL-8, CCL5, and COX-2 in PMA-stimulated THP-1. C. verum decreased ROS levels via NOX2 downregulation, as well as ameliorated plasma membrane translocation of PKCδ and decreased JNK phosphorylation. Besides, C. verum suppressed the nuclear translocation of AP-1 and NF-κB, which modulates diverse pro-inflammatory genes. CONCLUSION: C. verum effectively inhibits inflammation and oxidative stress during monocyte-macrophage differentiation and downregulates inflammatory mediators via NOX2/ROS and PKCδ/JNK/AP-1/NF-κB signaling.


Assuntos
Monócitos , NF-kappa B , NF-kappa B/metabolismo , Cinnamomum zeylanicum , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição AP-1/metabolismo , Antioxidantes/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Lipopolissacarídeos/farmacologia
18.
Nano Today ; 512023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37484164

RESUMO

The presence of immunosuppressive immune cells in tumors is a significant barrier to the generation of therapeutic immune responses. Similarly, in vivo triple-negative breast cancer (TNBC) models often contain prevalent, immunosuppressive tumor-associated macrophages in the tumor microenvironment (TME), resulting in breast cancer initiation, invasion, and metastasis. Here, we test systemic chemoimmunotherapy using small-molecule agents, paclitaxel (PTX), and colony-stimulating factor 1 receptor (CSF1R) inhibitor, PLX3397, to enhance the adaptive T cell immunity against TNBCs in immunocompetent mouse TNBC models. We use high-capacity poly(2-oxazoline) (POx)-based polymeric micelles to greatly improve the solubility of insoluble PTX and PLX3397 and widen the therapeutic index of such drugs. The results demonstrate that high-dose PTX in POx, even as a single agent, exerts strong effects on TME and induces long-term immune memory. In addition, we demonstrate that the PTX and PLX3397 combination provides consistent therapeutic improvement across several TNBC models, resulting from the repolarization of the immunosuppressive TME and enhanced T cell immune response that suppress both the primary tumor growth and metastasis. Overall, the work emphasizes the benefit of drug reformulation and outlines potential translational path for both PTX and PTX with PLX3397 combination therapy using POx polymeric micelles for the treatment of TNBC.

19.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37111237

RESUMO

(E)-2-methoxy-4-[3-(4-methoxyphenyl) prop-1-en-1-yl] phenol (MMPP), a novel synthetic analog of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal (BHPB), exerts anti-inflammatory and anticancer effects by downregulating the STAT3 pathway. It has also been recently reported that MMPP can act as a PPAR agonist which enhances glucose uptake and increases insulin sensitivity. However, it has not yet been elucidated whether MMPP can act as an antagonist of MD2 and inhibit MD2-dependent pathways. In this study, we evaluated the underlying modulatory effect of MMPP on inflammatory responses in LPS-stimulated THP-1 monocytes. MMPP inhibited the LPS-induced expression of inflammatory cytokines, such as TNF-α, IL-1ß, and IL-6, as well as the inflammatory mediator COX-2. MMPP also alleviated the IKKαß/IκBα and JNK pathways and the nuclear translocation of NF-κB p50 and c-Jun in LPS-stimulated THP-1 monocytes. In addition, the molecular docking analyses and in vitro binding assay revealed that MMPP can directly bind to CD14 and MD2, which are expressed in the plasma membrane, to recognize LPS first. Collectively, MMPP was directly bound to CD14 and MD2 and inhibited the activation of the NF-κB and JNK/AP-1 pathways, which then exerted anti-inflammatory activity. Accordingly, MMPP may be a candidate MD2 inhibitor targeting TLR4, which exerts anti-inflammatory effects.

20.
J Mater Chem B ; 11(42): 10131-10146, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37830254

RESUMO

Atopic dermatitis is a chronic inflammatory skin condition that is characterized by skin inflammation, itching, and redness. Although various treatments can alleviate symptoms, they often come with side effects, highlighting the need for new treatments. Here, we discovered a new peptide-based therapy using the intra-dermal delivery technology (IDDT) platform developed by Remedi Co., Ltd (REMEDI). The platform screens and identifies peptides derived from proteins in the human body that possess cell-penetrating peptide (CPP) properties. We screened over 1000-peptides and identified several derived from the Speckled protein (SP) family that have excellent CPP properties and have anti-inflammatory effects. We assessed these peptides for their potential as a treatment for atopic dermatitis. Among them, the RMSP1 peptide showed the most potent anti-inflammatory effects by inhibiting the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription 3 (STAT3) signaling pathways while possessing CPP properties. To further improve efficacy and stability, we developed a palmitoylated version called Pal-RMSP1. Formulation studies using liposomes (Pal-RMSP1 LP) and micelles (Pal-RMSP1 DP) demonstrated improved anti-inflammatory effects in vitro and enhanced therapeutic effects in vivo. Our study indicates that nano-formulated Pal-RMSP1 could have the potential to become a new treatment option for atopic dermatitis.


Assuntos
Dermatite Atópica , Nanopartículas , Humanos , Dermatite Atópica/tratamento farmacológico , NF-kappa B/metabolismo , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Anti-Inflamatórios/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA