Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Mol Cell ; 61(6): 859-73, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26990989

RESUMO

Dysregulation of MLL complex-mediated histone methylation plays a pivotal role in gene expression associated with diseases, but little is known about cellular factors modulating MLL complex activity. Here, we report that SON, previously known as an RNA splicing factor, controls MLL complex-mediated transcriptional initiation. SON binds to DNA near transcription start sites, interacts with menin, and inhibits MLL complex assembly, resulting in decreased H3K4me3 and transcriptional repression. Importantly, alternatively spliced short isoforms of SON are markedly upregulated in acute myeloid leukemia. The short isoforms compete with full-length SON for chromatin occupancy but lack the menin-binding ability, thereby antagonizing full-length SON function in transcriptional repression while not impairing full-length SON-mediated RNA splicing. Furthermore, overexpression of a short isoform of SON enhances replating potential of hematopoietic progenitors. Our findings define SON as a fine-tuner of the MLL-menin interaction and reveal short SON overexpression as a marker indicating aberrant transcriptional initiation in leukemia.


Assuntos
Proteínas de Ligação a DNA/genética , Histona-Lisina N-Metiltransferase/biossíntese , Leucemia Mieloide Aguda/genética , Proteína de Leucina Linfoide-Mieloide/biossíntese , Proteínas Proto-Oncogênicas/genética , Transcrição Gênica , Processamento Alternativo/genética , Linhagem Celular Tumoral , Cromatina/genética , Proteínas de Ligação a DNA/biossíntese , Regulação Leucêmica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Humanos , Leucemia Mieloide Aguda/patologia , Metilação , Antígenos de Histocompatibilidade Menor , Proteína de Leucina Linfoide-Mieloide/genética , Ligação Proteica , Isoformas de Proteínas/genética , Proteínas Proto-Oncogênicas/metabolismo
2.
J Biol Chem ; 298(6): 102013, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35525274

RESUMO

Dysregulation of cyclin-dependent kinases (CDKs) can promote unchecked cell proliferation and cancer progression. Although focal adhesion kinase (FAK) contributes to regulating cell cycle progression, the exact molecular mechanism remains unclear. Here, we found that FAK plays a key role in cell cycle progression potentially through regulation of CDK4/6 protein expression. We show that FAK inhibition increased its nuclear localization and induced G1 arrest in B16F10 melanoma cells. Mechanistically, we demonstrate nuclear FAK associated with CDK4/6 and promoted their ubiquitination and proteasomal degradation through recruitment of CDC homolog 1 (CDH1), an activator and substrate recognition subunit of the anaphase-promoting complex/cyclosome E3 ligase complex. We found the FAK N-terminal FERM domain acts as a scaffold to bring CDK4/6 and CDH1 within close proximity. However, overexpression of nonnuclear-localizing mutant FAK FERM failed to function as a scaffold for CDK4/6 and CDH1. Furthermore, shRNA knockdown of CDH1 increased CDK4/6 protein expression and blocked FAK inhibitor-induced reduction of CDK4/6 in B16F10 cells. In vivo, we show that pharmacological FAK inhibition reduced B16F10 tumor size, correlating with increased FAK nuclear localization and decreased CDK4/6 expression compared with vehicle controls. In patient-matched healthy skin and melanoma biopsies, we found FAK was mostly inactive and nuclear localized in healthy skin, whereas melanoma lesions showed increased active cytoplasmic FAK and elevated CDK4 expression. Taken together, our data demonstrate that FAK inhibition blocks tumor proliferation by inducing G1 arrest, in part through decreased CDK4/6 protein stability by nuclear FAK.


Assuntos
Antígenos CD , Caderinas , Quinase 6 Dependente de Ciclina , Proteína-Tirosina Quinases de Adesão Focal , Melanoma , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Proliferação de Células , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Melanoma/genética , Melanoma/fisiopatologia , Estados Unidos
3.
J Biol Chem ; 298(1): 101482, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896150

RESUMO

Patients who recover from nosocomial pneumonia oftentimes exhibit long-lasting cognitive impairment comparable with what is observed in Alzheimer's disease patients. We previously hypothesized that the lung endothelium contributes to infection-related neurocognitive dysfunction, because bacteria-exposed endothelial cells release a form(s) of cytotoxic tau that is sufficient to impair long-term potentiation in the hippocampus. However, the full-length lung and endothelial tau isoform(s) have yet to be resolved and it remains unclear whether the infection-induced endothelial cytotoxic tau triggers neuronal tau aggregation. Here, we demonstrate that lung endothelial cells express a big tau isoform and three additional tau isoforms that are similar to neuronal tau, each containing four microtubule-binding repeat domains, and that tau is expressed in lung capillaries in vivo. To test whether infection elicits endothelial tau capable of causing transmissible tau aggregation, the cells were infected with Pseudomonas aeruginosa. The infection-induced tau released from endothelium into the medium-induced neuronal tau aggregation in reporter cells, including reporter cells that express either the four microtubule-binding repeat domains or the full-length tau. Infection-induced release of pathological tau variant(s) from endothelium, and the ability of the endothelial-derived tau to cause neuronal tau aggregation, was abolished in tau knockout cells. After bacterial lung infection, brain homogenates from WT mice, but not from tau knockout mice, initiated tau aggregation. Thus, we conclude that bacterial pneumonia initiates the release of lung endothelial-derived cytotoxic tau, which is capable of propagating a neuronal tauopathy.


Assuntos
Pneumopatias , Pneumonia Bacteriana , Tauopatias , Proteínas tau , Animais , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/microbiologia , Disfunção Cognitiva/patologia , Células Endoteliais/metabolismo , Células Endoteliais/microbiologia , Células Endoteliais/patologia , Humanos , Pulmão/irrigação sanguínea , Pneumopatias/metabolismo , Pneumopatias/microbiologia , Pneumopatias/patologia , Camundongos , Pneumonia Bacteriana/metabolismo , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia , Isoformas de Proteínas , Pseudomonas aeruginosa , Tauopatias/genética , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/química , Proteínas tau/genética , Proteínas tau/metabolismo
4.
Circ Res ; 129(12): e215-e233, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34702049

RESUMO

RATIONALE: Vascular smooth muscle cells (SMCs) exhibit remarkable plasticity and can undergo dedifferentiation upon pathological stimuli associated with disease and interventions. OBJECTIVE: Although epigenetic changes are critical in SMC phenotype switching, a fundamental regulator that governs the epigenetic machineries regulating the fate of SMC phenotype has not been elucidated. METHODS AND RESULTS: Using SMCs, mouse models, and human atherosclerosis specimens, we found that FAK (focal adhesion kinase) activation elicits SMC dedifferentiation by stabilizing DNMT3A (DNA methyltransferase 3A). FAK in SMCs is activated in the cytoplasm upon serum stimulation in vitro or vessel injury and active FAK prevents DNMT3A from nuclear FAK-mediated degradation. However, pharmacological or genetic FAK catalytic inhibition forced FAK nuclear localization, which reduced DNMT3A protein via enhanced ubiquitination and proteasomal degradation. Reduced DNMT3A protein led to DNA hypomethylation in contractile gene promoters, which increased SMC contractile protein expression. RNA-sequencing identified SMC contractile genes as a foremost upregulated group by FAK inhibition from injured femoral artery samples compared with vehicle group. DNMT3A knockdown in injured arteries reduced DNA methylation and enhanced contractile gene expression supports the notion that nuclear FAK-mediated DNMT3A degradation via E3 ligase TRAF6 (TNF [tumor necrosis factor] receptor-associated factor 6) drives differentiation of SMCs. Furthermore, we observed that SMCs of human atherosclerotic lesions exhibited decreased nuclear FAK, which was associated with increased DNMT3A levels and decreased contractile gene expression. CONCLUSIONS: This study reveals that nuclear FAK induced by FAK catalytic inhibition specifically suppresses DNMT3A expression in injured vessels resulting in maintaining SMC differentiation by promoting the contractile gene expression. Thus, FAK inhibitors may provide a new treatment option to block SMC phenotypic switching during vascular remodeling and atherosclerosis.


Assuntos
Desdiferenciação Celular , Proteínas Contráteis/genética , Metilação de DNA , Quinase 1 de Adesão Focal/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Células Cultivadas , Proteínas Contráteis/metabolismo , DNA Metiltransferase 3A/genética , DNA Metiltransferase 3A/metabolismo , Quinase 1 de Adesão Focal/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/fisiologia , Proteólise , Ubiquitinação , Regulação para Cima
5.
Curr Issues Mol Biol ; 44(3): 1235-1246, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35723305

RESUMO

In this study, changes in cell signaling mechanisms in skin cells induced by various wavelengths and intensities of light-emitting diodes (LED) were investigated, focusing on the activity of focal adhesion kinase (FAK) in particular. We examined the effect of LED irradiation on cell survival, the generation of intracellular reactive oxygen species (ROS), and the activity of various cell-signaling proteins. Red LED light increased cell viability at all intensities, whereas strong green and blue LED light reduced cell viability, and this effect was reversed by NAC or DPI treatment. Red LED light caused an increase in ROS formation according to the increase in the intensity of the LED light, and green and blue LED lights led to sharp increases in ROS formation. In the initial reaction to LEDs, red LED light only increased the phosphorylation of FAK and extracellular-signal regulated protein kinase (ERK), whereas green and blue LED lights increased the phosphorylation of inhibitory-κB Kinase α (IKKα), c-jun N-terminal kinase (JNK), and p38. The phosphorylation of these intracellular proteins was reduced via FAK inhibitor, NAC, and DPI treatments. Even after 24 h of LED irradiation, the activity of FAK and ERK appeared in cells treated with red LED light but did not appear in cells treated with green and blue LED lights. Furthermore, the activity of caspase-3 was confirmed along with cell detachment. Therefore, our results suggest that red LED light induced mitogenic effects via low levels of ROS-FAK-ERK, while green and blue LED lights induced cytotoxic effects via cellular stress and apoptosis signaling resulting from high levels of ROS.

6.
Circ Res ; 125(2): 152-166, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31096851

RESUMO

RATIONALE: Neointimal hyperplasia is characterized by excessive accumulation of vascular smooth muscle cells (SMCs) leading to occlusive disorders, such as atherosclerosis and stenosis. Blood vessel injury increases growth factor secretion and matrix synthesis, which promotes SMC proliferation and neointimal hyperplasia via FAK (focal adhesion kinase). OBJECTIVE: To understand the mechanism of FAK action in SMC proliferation and neointimal hyperplasia. METHODS AND RESULTS: Using combined pharmacological FAK catalytic inhibition (VS-4718) and SMC-specific FAK kinase-dead (Myh11-Cre-ERT2) mouse models, we report that FAK regulates SMC proliferation and neointimal hyperplasia in part by governing GATA4- (GATA-binding protein 4) cyclin D1 signaling. Inhibition of FAK catalytic activity facilitates FAK nuclear localization, which is required for proteasome-mediated GATA4 degradation in the cytoplasm. Chromatin immunoprecipitation identified GATA4 binding to the mouse cyclin D1 promoter, and loss of GATA4-mediated cyclin D1 transcription diminished SMC proliferation. Stimulation with platelet-derived growth factor or serum activated FAK and redistributed FAK from the nucleus to cytoplasm, leading to concomitant increase in GATA4 protein and cyclin D1 expression. In a femoral artery wire injury model, increased neointimal hyperplasia was observed in parallel with elevated FAK activity, GATA4 and cyclin D1 expression following injury in control mice, but not in VS-4718-treated and SMC-specific FAK kinase-dead mice. Finally, lentiviral shGATA4 knockdown in the wire injury significantly reduced cyclin D1 expression, SMC proliferation, and neointimal hyperplasia compared with control mice. CONCLUSIONS: Nuclear enrichment of FAK by inhibition of FAK catalytic activity during vessel injury blocks SMC proliferation and neointimal hyperplasia through regulation of GATA4-mediated cyclin D1 transcription.


Assuntos
Proliferação de Células , Ciclina D1/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Fator de Transcrição GATA4/metabolismo , Miócitos de Músculo Liso/metabolismo , Túnica Íntima/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Ciclina D1/genética , Quinase 1 de Adesão Focal/antagonistas & inibidores , Hiperplasia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/fisiologia , Túnica Íntima/patologia
7.
J Biol Chem ; 294(29): 11213-11224, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31167784

RESUMO

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long noncoding RNA overexpressed in various cancers that promotes cell growth and metastasis. Although hypoxia has been shown to up-regulate MALAT1, only hypoxia-inducible factors (HIFs) have been implicated in activation of the MALAT1 promoter in specific cell types and other molecular mechanisms associated with hypoxia-mediated MALAT1 up-regulation remain largely unknown. Here, we demonstrate that hypoxia induces cancer cell-specific chromatin-chromatin interactions between newly identified enhancer-like cis-regulatory elements present at the MALAT1 locus. We show that hypoxia-mediated up-regulation of MALAT1 as well as its antisense strand TALAM1 occurs in breast cancer cells, but not in nontumorigenic mammary epithelial cells. Our analyses on the MALAT1 genomic locus discovered three novel putative enhancers that are located upstream and downstream of the MALAT1 gene body. We found that parts of these putative enhancers are epigenetically modified to a more open chromatin state under hypoxia in breast cancer cells. Furthermore, our chromosome conformation capture experiment demonstrated that noncancerous cells and breast cancer cells exhibit different interaction profiles under both normoxia and hypoxia, and only breast cancer cells gain specific chromatin interactions under hypoxia. Although the HIF-2α protein can enhance the interaction between the promoter and the putative 3' enhancer, the gain of chromatin interactions associated with other upstream elements, such as putative -7 and -20 kb enhancers, were HIF-independent events. Collectively, our study demonstrates that cancer cell-specific chromatin-chromatin interactions are formed at the MALAT1 locus under hypoxia, implicating a novel mechanism of MALAT1 regulation in cancer.


Assuntos
Neoplasias da Mama/metabolismo , Hipóxia Celular , Cromatina/metabolismo , RNA Longo não Codificante/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Elementos Facilitadores Genéticos , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Regulação para Cima
8.
Int J Mol Sci ; 21(10)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455571

RESUMO

In various vascular diseases, extracellular matrix (ECM) and integrin expression are frequently altered, leading to focal adhesion kinase (FAK) or proline-rich tyrosine kinase 2 (Pyk2) activation. In addition to the major roles of FAK and Pyk2 in regulating adhesion dynamics via integrins, recent studies have shown a new role for nuclear FAK in gene regulation in various vascular cells. In particular, FAK primarily localizes within the nuclei of vascular smooth muscle cells (VSMCs) of healthy arteries. However, vessel injury increased FAK localization back to adhesions and elevated FAK activity, leading to VSMC hyperplasia. The study suggested that abnormal FAK or Pyk2 activation in vascular cells may cause pathology in vascular diseases. Here we will review several studies of FAK and Pyk2 associated with integrin signaling in vascular diseases including restenosis, atherosclerosis, heart failure, pulmonary arterial hypertension, aneurysm, and thrombosis. Despite the importance of FAK family kinases in vascular diseases, comprehensive reviews are scarce. Therefore, we summarized animal models involving FAK family kinases in vascular diseases.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Doenças Vasculares/metabolismo , Animais , Proteína-Tirosina Quinases de Adesão Focal/química , Proteína-Tirosina Quinases de Adesão Focal/genética , Humanos , Doenças Vasculares/patologia
9.
Kidney Int ; 95(6): 1494-1504, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31005274

RESUMO

Although genetic testing is increasingly used in clinical nephrology, a large number of patients with congenital abnormalities of the kidney and urinary tract (CAKUT) remain undiagnosed with current gene panels. Therefore, careful curation of novel genetic findings is key to improving diagnostic yields. We recently described a novel intellectual disability syndrome caused by de novo heterozygous loss-of-function mutations in the gene encoding the splicing factor SON. Here, we show that many of these patients, including two previously unreported, exhibit a wide array of kidney abnormalities. Detailed phenotyping of 14 patients with SON haploinsufficiency identified kidney anomalies in 8 patients, including horseshoe kidney, unilateral renal hypoplasia, and renal cysts. Recurrent urinary tract infections, electrolyte disturbances, and hypertension were also observed in some patients. SON knockdown in kidney cell lines leads to abnormal pre-mRNA splicing, resulting in decreased expression of several established CAKUT genes. Furthermore, these molecular events were observed in patient-derived cells with SON haploinsufficiency. Taken together, our data suggest that the wide spectrum of phenotypes in patients with a pathogenic SON mutation is a consequence of impaired pre-mRNA splicing of several CAKUT genes. We propose that genetic testing panels designed to diagnose children with a kidney phenotype should include the SON gene.


Assuntos
Proteínas de Ligação a DNA/genética , Testes Genéticos/métodos , Haploinsuficiência , Antígenos de Histocompatibilidade Menor/genética , Splicing de RNA/genética , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Adolescente , Adulto , Criança , Pré-Escolar , Proteínas de Ligação a DNA/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Antígenos de Histocompatibilidade Menor/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Canais de Cátion TRPP/genética , Anormalidades Urogenitais/diagnóstico , Refluxo Vesicoureteral/diagnóstico
10.
Biochem Biophys Res Commun ; 509(4): 1034-1040, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30660359

RESUMO

Malignant melanoma typically metastasizes to lymph nodes (LNs) as a primary or in-transit lesion before secondary metastasis occurs, and LN biopsy is a common procedure to diagnose melanoma progression. Since cancer metastasis is a complex process where various interactions between tumor cells and the stroma play key roles in establishing metastatic lesions, the exact mechanisms underlying melanoma metastasis to LNs remains unknown. It has been known that focal adhesion kinase (FAK) activity promotes the expression of proinflammatory vascular cell adhesion molecule-1 (VCAM-1). As VCAM-1 is a major receptor for α4 integrin and plays a key role in leukocyte recruitment, we reasoned that inhibition of FAK activity may reduce VCAM-1 expression within LNs and thus reduce metastasis of α4 integrin-expressing melanoma to LNs. First, we found that a pharmacological FAK inhibitor, PF-271, blocked tumor necrosis factor-α (TNF-α)-mediated VCAM-1 expression on human dermal lymphatic endothelial cells (HDLECs). In vitro, PF-271 significantly decreased B16F10 melanoma adhesion to and transmigration through HDLECs compared to TNF-α treated cells. Furthermore, in vivo FAK inhibition by oral PF-271 administration reduced VCAM-1 expression in inguinal, cervical, and popliteal LNs compared to vehicle treated mice. Finally, in a footpad metastasis model, B16F10 melanoma cells were injected into the right footpad of C57BL/6 mice, and PF-271 (50 mg/kg, twice daily for 6 days) was orally administrated after 1 week of tumor transplantation. While untreated mice exhibited significant metastatic melanoma lesions in popliteal LNs, PF-271 treated mice showed only marginal melanoma metastasis. These results support the possibility that FAK inhibitors may be a novel preventative option in melanoma metastasis by blocking VCAM-1 expression in LNs.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Integrina alfa4/metabolismo , Linfonodos/patologia , Melanoma/patologia , Metástase Neoplásica/prevenção & controle , Molécula 1 de Adesão de Célula Vascular/antagonistas & inibidores , Animais , Linhagem Celular , Humanos , Melanoma/química , Melanoma Experimental , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Molécula 1 de Adesão de Célula Vascular/metabolismo
11.
J Cell Sci ; 125(Pt 24): 5960-73, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23077174

RESUMO

Transmembrane 4 L six family member 5 (TM4SF5) plays an important role in cell migration, and focal adhesion kinase (FAK) activity is essential for homeostatic and pathological migration of adherent cells. However, it is unclear how TM4SF5 signaling mediates the activation of cellular migration machinery, and how FAK is activated during cell adhesion. Here, we showed that direct and adhesion-dependent binding of TM4SF5 to FAK causes a structural alteration that may release the inhibitory intramolecular interaction in FAK. In turn, this may activate FAK at the cell's leading edge, to promote migration/invasion and in vivo metastasis. TM4SF5-mediated FAK activation occurred during integrin-mediated cell adhesion. TM4SF5 was localized at the leading edge of the cells, together with FAK and actin-organizing molecules, indicating a signaling link between TM4SF5/FAK and actin reorganization machinery. Impaired interactions between TM4SF5 and FAK resulted in an attenuated FAK phosphorylation (the signaling link to actin organization machinery) and the metastatic potential. Our findings demonstrate that TM4SF5 directly binds to and activates FAK in an adhesion-dependent manner, to regulate cell migration and invasion, suggesting that TM4SF5 is a promising target in the treatment of metastatic cancer.


Assuntos
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Quinase 1 de Adesão Focal/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Tetraspaninas/genética , Sequência de Aminoácidos , Animais , Carcinoma Hepatocelular/enzimologia , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Ativação Enzimática , Feminino , Xenoenxertos , Humanos , Neoplasias Hepáticas/enzimologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Metástase Neoplásica , Fosforilação , Transdução de Sinais , Tetraspaninas/metabolismo
12.
JCI Insight ; 9(5)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38290089

RESUMO

Rare diseases are underrepresented in biomedical research, leading to insufficient awareness. Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome is a rare disease caused by genetic alterations that result in heterozygous loss of function of SON. While patients with ZTTK syndrome live with numerous symptoms, the lack of model organisms hampers our understanding of SON and this complex syndrome. Here, we developed Son haploinsufficiency (Son+/-) mice as a model of ZTTK syndrome and identified the indispensable roles of Son in organ development and hematopoiesis. Son+/- mice recapitulated clinical symptoms of ZTTK syndrome, including growth retardation, cognitive impairment, skeletal abnormalities, and kidney agenesis. Furthermore, we identified hematopoietic abnormalities in Son+/- mice, including leukopenia and immunoglobulin deficiency, similar to those observed in human patients. Surface marker analyses and single-cell transcriptome profiling of hematopoietic stem and progenitor cells revealed that Son haploinsufficiency shifted cell fate more toward the myeloid lineage but compromised lymphoid lineage development by reducing genes required for lymphoid and B cell lineage specification. Additionally, Son haploinsufficiency caused inappropriate activation of erythroid genes and impaired erythropoiesis. These findings highlight the importance of the full gene expression of Son in multiple organs. Our model serves as an invaluable research tool for this rare disease and related disorders associated with SON dysfunction.


Assuntos
Hematopoese , Doenças Raras , Animais , Humanos , Camundongos , Perfilação da Expressão Gênica , Hematopoese/genética , Mutação
13.
Atherosclerosis ; 379: 117189, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37527611

RESUMO

BACKGROUND AND AIMS: Hyperlipidemia leads to the accumulation of oxidized low-density lipoprotein (oxLDL) within the vessel wall where it causes chronic inflammation in endothelial cells (ECs) and drives atherosclerotic lesions. Although focal adhesion kinase (FAK) is critical in proinflammatory NF-κB activation in ECs, it is unknown if hyperlipidemia alters FAK-mediated NF-κB activity in vivo to affect atherosclerosis progression. METHODS: We investigated changes in EC FAK and NF-κB activation using Apoe-/- mice fed a western diet (WD). Both pharmacological FAK inhibition and EC-specific FAK inhibited mouse models were utilized. FAK and NF-κB localization and activity were also analyzed in human atherosclerotic samples. RESULTS: ECs of hyperlipidemic mice clearly showed much higher levels of FAK activation in the cytoplasm, which was associated with increased NF-κB activation compared to normal diet (ND) group. On the contrary, FAK is mostly localized in the nucleus and inactive in ECs under healthy conditions with a low NF-κB activity. Both pharmacological and EC-specific genetic FAK inhibition in WD fed Apoe-/- mice exhibited a significant decrease in FAK activity and cytoplasmic localization, NF-κB activation, macrophage recruitment, and atherosclerotic lesions compared to the vehicle or FAK wild-type groups. Analyses of human atherosclerotic specimens revealed a positive correlation between increased active cytoplasmic FAK within ECs and NF-κB activation in the lesions. CONCLUSIONS: Hyperlipidemic conditions activate NF-κB pathway by increasing EC FAK activity and cytoplasmic localization in mice and human atherosclerotic samples. As FAK inhibition can efficiently reduce vascular inflammation and atherosclerotic lesions in mice by reversing EC FAK localization and NF-κB activation, these findings support a potential use for FAK inhibitors in treating atherosclerosis.


Assuntos
Aterosclerose , Hiperlipidemias , Animais , Humanos , Camundongos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/genética , Células Endoteliais/metabolismo , Endotélio , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Hiperlipidemias/complicações , Inflamação/metabolismo , NF-kappa B/metabolismo
14.
bioRxiv ; 2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-38014320

RESUMO

Rare diseases are underrepresented in biomedical research, leading to insufficient awareness. Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome is a rare disease caused by genetic alterations that result in heterozygous loss-of-function of SON. While ZTTK syndrome patients suffer from numerous symptoms, the lack of model organisms hamper our understanding of both SON and this complex syndrome. Here, we developed Son haploinsufficiency (Son+/-) mice as a model of ZTTK syndrome and identified the indispensable roles of Son in organ development and hematopoiesis. Son+/- mice recapitulated clinical symptoms of ZTTK syndrome, including growth retardation, cognitive impairment, skeletal abnormalities, and kidney agenesis. Furthermore, we identified hematopoietic abnormalities in Son+/- mice, similar to those observed in human patients. Surface marker analyses and single-cell transcriptome profiling of hematopoietic stem and progenitor cells revealed that Son haploinsufficiency inclines cell fate toward the myeloid lineage but compromises lymphoid lineage development by reducing key genes required for lymphoid and B cell lineage specification. Additionally, Son haploinsufficiency causes inappropriate activation of erythroid genes and impaired erythroid maturation. These findings highlight the importance of the full gene dosage of Son in organ development and hematopoiesis. Our model serves as an invaluable research tool for this rare disease and related disorders associated with SON dysfunction.

15.
Cardiovasc Res ; 118(4): 1150-1163, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33839758

RESUMO

AIMS: Vascular smooth muscle cells (VSMCs) normally exhibit a very low proliferative rate. Vessel injury triggers VSMC proliferation, in part, through focal adhesion kinase (FAK) activation, which increases transcription of cyclin D1, a key activator for cell cycle-dependent kinases (CDKs). At the same time, we also observe that FAK regulates the expression of the CDK inhibitors (CDKIs) p27 and p21. However, the mechanism of how FAK controls CDKIs in cell cycle progression is not fully understood. METHODS AND RESULTS: We found that pharmacological and genetic FAK inhibition increased p27 and p21 by reducing stability of S-phase kinase-associated protein 2 (Skp2), which targets theCDKIs for degradation. FAK N-terminal domain interacts with Skp2 and an APC/C E3 ligase activator fizzy-related 1 (Fzr1) in the nucleus, which promote ubiquitination and degradation of both Skp2 and Fzr1. Notably, overexpression of cyclin D1 alone failed to promote proliferation of genetic FAK kinase-dead (KD) VSMCs, suggesting that the FAK-Skp2-CDKI signalling axis is distinct from the FAK-cyclin D1 pathway. However, overexpression of both cyclin D1 and Skp2 enabled proliferation of FAK-KD VSMCs, implicating that FAK ought to control both activating and inhibitory switches for CDKs. In vivo, wire injury activated FAK in the cytosol, which increased Skp2 and decreased p27 and p21 levels. CONCLUSION: Both pharmacological FAK and genetic FAK inhibition reduced Skp2 expression in VSMCs upon injury, which significantly reduced intimal hyperplasia through elevated expression of p27 and p21. This study revealed that nuclear FAK-Skp2-CDKI signalling negatively regulates CDK activity in VSMC proliferation.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Músculo Liso Vascular , Proteínas Quinases Associadas a Fase S , Proliferação de Células , Células Cultivadas , Ciclina D1/genética , Ciclina D1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Músculo Liso Vascular/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo
16.
J Biol Chem ; 285(3): 1743-53, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19880522

RESUMO

Pyk2 is a cytoplasmic tyrosine kinase related to focal adhesion kinase (FAK). Compensatory Pyk2 expression occurs upon FAK loss in mice. However, the impact of Pyk2 up-regulation remains unclear. Previous studies showed that nuclear-localized FAK promotes cell proliferation and survival through FAK FERM domain-enhanced p53 tumor suppressor degradation (Lim, S. T., Chen, X. L., Lim, Y., Hanson, D. A., Vo, T. T., Howerton, K., Larocque, N., Fisher, S. J., Schlaepfer, D. D., and Ilic, D. (2008) Mol. Cell 29, 9-22). Here, we show that FAK knockdown triggered p53 activation and G(1) cell cycle arrest in human umbilical vein endothelial cells after 4 days. However, by 7 days elevated Pyk2 expression occurred with a reduction in p53 levels and the release of the G(1) block under conditions of continued FAK knockdown. To determine whether Pyk2 regulates p53, experiments were performed in FAK(-/-)p21(-/-) mouse embryo fibroblasts expressing endogenous Pyk2 and in ID8 ovarian carcinoma cells expressing both Pyk2 and FAK. In both cell lines, Pyk2 knockdown increased p53 levels and inhibited cell proliferation associated with G(1) cell cycle arrest. Pyk2 FERM domain re-expression was sufficient to reduce p53 levels and promote increased BrdUrd incorporation. Pyk2 FERM promoted Mdm2-dependent p53 ubiquitination. Pyk2 FERM effects on p53 were blocked by proteasomal inhibition or mutational-inactivation of Pyk2 FERM nuclear localization. Staurosporine stress of ID8 cells promoted endogenous Pyk2 nuclear accumulation and enhanced Pyk2 binding to p53. Pyk2 knockdown potentiated ID8 cell death upon staurosporine addition. Moreover, Pyk2 FERM expression in human fibroblasts upon FAK knockdown prevented cisplatin-mediated apoptosis. Our studies demonstrate that nuclear Pyk2 functions to limit p53 levels, thus facilitating cell growth and survival in a kinase-independent manner.


Assuntos
Adaptação Fisiológica , Quinase 2 de Adesão Focal/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Bromodesoxiuridina/metabolismo , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Quinase 2 de Adesão Focal/química , Quinase 2 de Adesão Focal/deficiência , Quinase 2 de Adesão Focal/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Mutação , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Estaurosporina/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
17.
J Biol Chem ; 285(28): 21526-36, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20442405

RESUMO

Focal adhesion kinase (FAK) associates with both integrins and growth factor receptors in the control of cell motility and survival. Loss of FAK during mouse development results in lethality at embryonic day 8.5 (E8.5) and a block in cell proliferation. Because FAK serves as both a scaffold and signaling protein, gene knock-outs do not provide mechanistic insights in distinguishing between these modes of FAK function. To determine the role of FAK activity during development, a knock-in point mutation (lysine 454 to arginine (R454)) within the catalytic domain was introduced by homologous recombination. Homozygous FAK(R454/R454) mutation was lethal at E9.5 with defects in blood vessel formation as determined by lack of yolk sac primary capillary plexus formation and disorganized endothelial cell patterning in FAK(R454/R454) embryos. In contrast to the inability of embryonic FAK(-/-) cells to proliferate ex vivo, primary FAK(R454/R454) mouse embryo fibroblasts (MEFs) were established from E8.5 embryos. R454 MEFs exhibited no difference in cell growth compared with normal MEFs, and R454 FAK localized to focal adhesions but was not phosphorylated at Tyr-397. In E8.5 embryos and primary MEFs, FAK R454 mutation resulted in decreased c-Src Tyr-416 phosphorylation. R454 MEFs exhibited enhanced focal adhesion formation, decreased migration, and defects in cell polarity. Within immortalized MEFs, FAK activity was required for fibronectin-stimulated FAK-p190RhoGAP association and p190RhoGAP tyrosine phosphorylation linked to decreased RhoA GTPase activity, focal adhesion turnover, and directional motility. Our results establish that intrinsic FAK activity is essential for developmental processes controlling blood vessel formation and cell motility-polarity but not cell proliferation. This work supports the use of FAK inhibitors to disrupt neovascularization.


Assuntos
Vasos Sanguíneos/enzimologia , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Mutação , Animais , Vasos Sanguíneos/metabolismo , Movimento Celular , Proliferação de Células , Fibronectinas/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Complexo de Golgi/metabolismo , Homozigoto , Camundongos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Recombinação Genética , Proteínas Repressoras/metabolismo
18.
Inflammation ; 44(3): 1130-1144, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33527321

RESUMO

While sustained nuclear factor-κB (NF-κB) activation is critical for proinflammatory molecule expression, regulators of NF-κB activity during chronic inflammation are not known. We investigated the role of focal adhesion kinase (FAK) on sustained NF-κB activation in tumor necrosis factor-α (TNF-α)-stimulated endothelial cells (ECs) both in vitro and in vivo. We found that FAK inhibition abolished TNF-α-mediated sustained NF-κB activity in ECs by disrupting formation of TNF-α receptor complex-I (TNFRC-I). Additionally, FAK inhibition diminished recruitment of receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and the inhibitor of NF-κB (IκB) kinase (IKK) complex to TNFRC-I, resulting in elevated stability of IκBα protein. In mice given TNF-α, pharmacological and genetic FAK inhibition blocked TNF-α-induced IKK-NF-κB activation in aortic ECs. Mechanistically, TNF-α activated and redistributed FAK from the nucleus to the cytoplasm, causing elevated IKK-NF-κB activation. On the other hand, FAK inhibition trapped FAK in the nucleus of ECs even upon TNF-α stimulation, leading to reduced IKK-NF-κB activity. Together, these findings support a potential use for FAK inhibitors in treating chronic inflammatory diseases.


Assuntos
Quinase 1 de Adesão Focal/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Inflamação/enzimologia , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Transporte Ativo do Núcleo Celular , Animais , Células Cultivadas , Quinase 1 de Adesão Focal/genética , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Humanos , Quinase I-kappa B/metabolismo , Inflamação/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidor de NF-kappaB alfa/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais
19.
Matrix Biol ; 103-104: 1-21, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34537369

RESUMO

The multifunctional glycoprotein fibronectin influences several crucial cellular processes and contributes to multiple pathologies. While a link exists between fibronectin-associated pathologies and the receptor tyrosine kinase EphA2, the mechanism by which EphA2 promotes fibronectin matrix remodeling remains unknown. We previously demonstrated that EphA2 deletion reduces smooth muscle fibronectin deposition and blunts fibronectin deposition in atherosclerosis without influencing fibronectin expression. We now show that EphA2 expression is required for contractility-dependent elongation of tensin- and α5ß1 integrin-rich fibrillar adhesions that drive fibronectin fibrillogenesis. Mechanistically, EphA2 localizes to integrin adhesions where focal adhesion kinase mediates ligand-independent Y772 phosphorylation, and mutation of this site significantly blunts fibrillar adhesion length. EphA2 deficiency decreases smooth muscle cell contractility by enhancing p190RhoGAP activation and reducing RhoA activity, whereas stimulating RhoA signaling in EphA2 deficient cells rescues fibrillar adhesion elongation. Together, these data identify EphA2 as a novel regulator of fibrillar adhesion elongation and provide the first data identifying a role for EphA2 signaling in integrin adhesions.


Assuntos
Fibronectinas , Integrinas , Adesão Celular , Citoesqueleto , Fibronectinas/genética , Adesões Focais , Integrina alfa5beta1 , Integrinas/genética , Transdução de Sinais , Tensinas/genética
20.
Cancer Gene Ther ; 28(9): 1000-1015, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33247227

RESUMO

A high incidence of acute megakaryoblastic leukemia (AMKL) in Down syndrome patients implies that chromosome 21 genes have a pivotal role in AMKL development, but the functional contribution of individual genes remains elusive. Here, we report that SON, a chromosome 21-encoded DNA- and RNA-binding protein, inhibits megakaryocytic differentiation by suppressing RUNX1 and the megakaryocytic gene expression program. As megakaryocytic progenitors differentiate, SON expression is drastically reduced, with mature megakaryocytes having the lowest levels. In contrast, AMKL cells express an aberrantly high level of SON, and knockdown of SON induced the onset of megakaryocytic differentiation in AMKL cell lines. Genome-wide transcriptome analyses revealed that SON knockdown turns on the expression of pro-megakaryocytic genes while reducing erythroid gene expression. Mechanistically, SON represses RUNX1 expression by directly binding to the proximal promoter and two enhancer regions, the known +23 kb enhancer and the novel +139 kb enhancer, at the RUNX1 locus to suppress H3K4 methylation. In addition, SON represses the expression of the AP-1 complex subunits JUN, JUNB, and FOSB which are required for late megakaryocytic gene expression. Our findings define SON as a negative regulator of RUNX1 and megakaryocytic differentiation, implicating SON overexpression in impaired differentiation during AMKL development.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Proteínas de Ligação a DNA/metabolismo , Leucemia Megacarioblástica Aguda/metabolismo , Megacariócitos/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Diferenciação Celular , Síndrome de Down/genética , Expressão Gênica , Predisposição Genética para Doença , Humanos , Leucemia Megacarioblástica Aguda/genética , Leucemia Megacarioblástica Aguda/patologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA