Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hippocampus ; 34(5): 241-260, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38415962

RESUMO

The medial temporal lobe (MTL) cortex, located adjacent to the hippocampus, is crucial for memory and prone to the accumulation of certain neuropathologies such as Alzheimer's disease neurofibrillary tau tangles. The MTL cortex is composed of several subregions which differ in their functional and cytoarchitectonic features. As neuroanatomical schools rely on different cytoarchitectonic definitions of these subregions, it is unclear to what extent their delineations of MTL cortex subregions overlap. Here, we provide an overview of cytoarchitectonic definitions of the entorhinal and parahippocampal cortices as well as Brodmann areas (BA) 35 and 36, as provided by four neuroanatomists from different laboratories, aiming to identify the rationale for overlapping and diverging delineations. Nissl-stained series were acquired from the temporal lobes of three human specimens (two right and one left hemisphere). Slices (50 µm thick) were prepared perpendicular to the long axis of the hippocampus spanning the entire longitudinal extent of the MTL cortex. Four neuroanatomists annotated MTL cortex subregions on digitized slices spaced 5 mm apart (pixel size 0.4 µm at 20× magnification). Parcellations, terminology, and border placement were compared among neuroanatomists. Cytoarchitectonic features of each subregion are described in detail. Qualitative analysis of the annotations showed higher agreement in the definitions of the entorhinal cortex and BA35, while the definitions of BA36 and the parahippocampal cortex exhibited less overlap among neuroanatomists. The degree of overlap of cytoarchitectonic definitions was partially reflected in the neuroanatomists' agreement on the respective delineations. Lower agreement in annotations was observed in transitional zones between structures where seminal cytoarchitectonic features are expressed less saliently. The results highlight that definitions and parcellations of the MTL cortex differ among neuroanatomical schools and thereby increase understanding of why these differences may arise. This work sets a crucial foundation to further advance anatomically-informed neuroimaging research on the human MTL cortex.


Assuntos
Lobo Temporal , Humanos , Lobo Temporal/patologia , Neuroanatomia/métodos , Masculino , Giro Para-Hipocampal/patologia , Giro Para-Hipocampal/diagnóstico por imagem , Feminino , Idoso , Córtex Entorrinal/patologia , Córtex Entorrinal/anatomia & histologia , Laboratórios , Idoso de 80 Anos ou mais
2.
Alzheimers Dement ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39279366

RESUMO

This paper for the 20th anniversary of the Alzheimer's Disease Neuroimaging Initiative (ADNI) provides an overview of magnetic resonance imaging (MRI) of medial temporal lobe (MTL) subregions in ADNI using a dedicated high-resolution T2-weighted sequence. A review of the work that supported the inclusion of this imaging modality into ADNI Phase 3 is followed by a brief description of the ADNI MTL imaging and analysis protocols and a summary of studies that have used these data. This review is supplemented by a new study that uses novel surface-based tools to characterize MTL neurodegeneration across biomarker-defined AD stages. This analysis reveals a pattern of spreading cortical thinning associated with increasing levels of tau pathology in the presence of elevated amyloid beta, with apparent epicenters in the transentorhinal region and inferior hippocampal subfields. The paper concludes with an outlook for high-resolution imaging of the MTL in ADNI Phase 4. HIGHLIGHTS: As of Phase 3, the Alzheimer's Disease Neuroimaging Initiative (ADNI) magnetic resonance imaging (MRI) protocol includes a high-resolution T2-weighted MRI scan optimized for imaging hippocampal subfields and medial temporal lobe (MTL) subregions. These scans are processed by the ADNI core to obtain automatic segmentations of MTL subregions and to derive morphologic measurements. More detailed granular examination of MTL neurodegeneration in response to disease progression is achieved by applying surface-based modeling techniques. Surface-based analysis of gray matter loss in MTL subregions reveals increasing and spatially expanding patterns of neurodegeneration with advancing stages of Alzheimer's disease (AD), as defined based on amyloid and tau positron emission tomography biomarkers in accordance with recently proposed criteria. These patterns closely align with post mortem literature on spread of pathological tau in AD, supporting the role of tau pathology in the presence of elevated levels of amyloid beta as the driver of neurodegeneration.

3.
Alzheimers Dement ; 19(6): 2355-2364, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36464907

RESUMO

INTRODUCTION: Neurodegenerative disorders are associated with different pathologies that often co-occur but cannot be measured specifically with in vivo methods. METHODS: Thirty-three brain hemispheres from donors with an Alzheimer's disease (AD) spectrum diagnosis underwent T2-weighted magnetic resonance imaging (MRI). Gray matter thickness was paired with histopathology from the closest anatomic region in the contralateral hemisphere. RESULTS: Partial Spearman correlation of phosphorylated tau and cortical thickness with TAR DNA-binding protein 43 (TDP-43) and α-synuclein scores, age, sex, and postmortem interval as covariates showed significant relationships in entorhinal and primary visual cortices, temporal pole, and insular and posterior cingulate gyri. Linear models including Braak stages, TDP-43 and α-synuclein scores, age, sex, and postmortem interval showed significant correlation between Braak stage and thickness in the parahippocampal gyrus, entorhinal cortex, and Broadman area 35. CONCLUSION: We demonstrated an association of measures of AD pathology with tissue loss in several AD regions despite a limited range of pathology in these cases. HIGHLIGHTS: Neurodegenerative disorders are associated with co-occurring pathologies that cannot be measured specifically with in vivo methods. Identification of the topographic patterns of these pathologies in structural magnetic resonance imaging (MRI) may provide probabilistic biomarkers. We demonstrated the correlation of the specific patterns of tissue loss from ex vivo brain MRI with underlying pathologies detected in postmortem brain hemispheres in patients with Alzheimer's disease (AD) spectrum disorders. The results provide insight into the interpretation of in vivo structural MRI studies in patients with AD spectrum disorders.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Doenças Neurodegenerativas/complicações , Imageamento por Ressonância Magnética , Proteínas de Ligação a DNA
4.
Brain ; 144(9): 2784-2797, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34259858

RESUMO

Tau protein neurofibrillary tangles are closely linked to neuronal/synaptic loss and cognitive decline in Alzheimer's disease and related dementias. Our knowledge of the pattern of neurofibrillary tangle progression in the human brain, critical to the development of imaging biomarkers and interpretation of in vivo imaging studies in Alzheimer's disease, is based on conventional two-dimensional histology studies that only sample the brain sparsely. To address this limitation, ex vivo MRI and dense serial histological imaging in 18 human medial temporal lobe specimens (age 75.3 ± 11.4 years, range 45 to 93) were used to construct three-dimensional quantitative maps of neurofibrillary tangle burden in the medial temporal lobe at individual and group levels. Group-level maps were obtained in the space of an in vivo brain template, and neurofibrillary tangles were measured in specific anatomical regions defined in this template. Three-dimensional maps of neurofibrillary tangle burden revealed significant variation along the anterior-posterior axis. While early neurofibrillary tangle pathology is thought to be confined to the transentorhinal region, we found similar levels of burden in this region and other medial temporal lobe subregions, including amygdala, temporopolar cortex, and subiculum/cornu ammonis 1 hippocampal subfields. Overall, the three-dimensional maps of neurofibrillary tangle burden presented here provide more complete information about the distribution of this neurodegenerative pathology in the region of the cortex where it first emerges in Alzheimer's disease, and may help inform the field about the patterns of pathology spread, as well as support development and validation of neuroimaging biomarkers.


Assuntos
Mapeamento Encefálico/métodos , Imageamento Tridimensional/métodos , Emaranhados Neurofibrilares/patologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/patologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade
5.
Imaging Neurosci (Camb) ; 2: 1-30, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-39301426

RESUMO

Postmortem MRI allows brain anatomy to be examined at high resolution and to link pathology measures with morphometric measurements. However, automated segmentation methods for brain mapping in postmortem MRI are not well developed, primarily due to limited availability of labeled datasets, and heterogeneity in scanner hardware and acquisition protocols. In this work, we present a high-resolution dataset of 135 postmortem human brain tissue specimens imaged at 0.3 mm3 isotropic using a T2w sequence on a 7T whole-body MRI scanner. We developed a deep learning pipeline to segment the cortical mantle by benchmarking the performance of nine deep neural architectures, followed by post-hoc topological correction. We evaluate the reliability of this pipeline via overlap metrics with manual segmentation in 6 specimens, and intra-class correlation between cortical thickness measures extracted from the automatic segmentation and expert-generated reference measures in 36 specimens. We also segment four subcortical structures (caudate, putamen, globus pallidus, and thalamus), white matter hyperintensities, and the normal appearing white matter, providing a limited evaluation of accuracy. We show generalizing capabilities across whole-brain hemispheres in different specimens, and also on unseen images acquired at 0.28 mm3 and 0.16 mm3 isotropic T2*w fast low angle shot (FLASH) sequence at 7T. We report associations between localized cortical thickness and volumetric measurements across key regions, and semi-quantitative neuropathological ratings in a subset of 82 individuals with Alzheimer's disease (AD) continuum diagnoses. Our code, Jupyter notebooks, and the containerized executables are publicly available at the project webpage (https://pulkit-khandelwal.github.io/exvivo-brain-upenn/).

6.
Nat Commun ; 15(1): 4803, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839876

RESUMO

Our current understanding of the spread and neurodegenerative effects of tau neurofibrillary tangles (NFTs) within the medial temporal lobe (MTL) during the early stages of Alzheimer's Disease (AD) is limited by the presence of confounding non-AD pathologies and the two-dimensional (2-D) nature of conventional histology studies. Here, we combine ex vivo MRI and serial histological imaging from 25 human MTL specimens to present a detailed, 3-D characterization of quantitative NFT burden measures in the space of a high-resolution, ex vivo atlas with cytoarchitecturally-defined subregion labels, that can be used to inform future in vivo neuroimaging studies. Average maps show a clear anterior to poster gradient in NFT distribution and a precise, spatial pattern with highest levels of NFTs found not just within the transentorhinal region but also the cornu ammonis (CA1) subfield. Additionally, we identify granular MTL regions where measures of neurodegeneration are likely to be linked to NFTs specifically, and thus potentially more sensitive as early AD biomarkers.


Assuntos
Doença de Alzheimer , Imageamento por Ressonância Magnética , Emaranhados Neurofibrilares , Lobo Temporal , Proteínas tau , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/metabolismo , Lobo Temporal/patologia , Proteínas tau/metabolismo , Masculino , Feminino , Idoso , Imageamento por Ressonância Magnética/métodos , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Idoso de 80 Anos ou mais , Autopsia , Neuroimagem/métodos , Pessoa de Meia-Idade , Imageamento post mortem
7.
bioRxiv ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37292729

RESUMO

The medial temporal lobe (MTL) cortex, located adjacent to the hippocampus, is crucial for memory and prone to the accumulation of certain neuropathologies such as Alzheimer's disease neurofibrillary tau tangles. The MTL cortex is composed of several subregions which differ in their functional and cytoarchitectonic features. As neuroanatomical schools rely on different cytoarchitectonic definitions of these subregions, it is unclear to what extent their delineations of MTL cortex subregions overlap. Here, we provide an overview of cytoarchitectonic definitions of the cortices that make up the parahippocampal gyrus (entorhinal and parahippocampal cortices) and the adjacent Brodmann areas (BA) 35 and 36, as provided by four neuroanatomists from different laboratories, aiming to identify the rationale for overlapping and diverging delineations. Nissl-stained series were acquired from the temporal lobes of three human specimens (two right and one left hemisphere). Slices (50 µm thick) were prepared perpendicular to the long axis of the hippocampus spanning the entire longitudinal extent of the MTL cortex. Four neuroanatomists annotated MTL cortex subregions on digitized (20X resolution) slices with 5 mm spacing. Parcellations, terminology, and border placement were compared among neuroanatomists. Cytoarchitectonic features of each subregion are described in detail. Qualitative analysis of the annotations showed higher agreement in the definitions of the entorhinal cortex and BA35, while definitions of BA36 and the parahippocampal cortex exhibited less overlap among neuroanatomists. The degree of overlap of cytoarchitectonic definitions was partially reflected in the neuroanatomists' agreement on the respective delineations. Lower agreement in annotations was observed in transitional zones between structures where seminal cytoarchitectonic features are expressed more gradually. The results highlight that definitions and parcellations of the MTL cortex differ among neuroanatomical schools and thereby increase understanding of why these differences may arise. This work sets a crucial foundation to further advance anatomically-informed human neuroimaging research on the MTL cortex.

8.
Med Image Anal ; 83: 102683, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36379194

RESUMO

Deep convolutional neural networks (DCNN) achieve very high accuracy in segmenting various anatomical structures in medical images but often suffer from relatively poor generalizability. Multi-atlas segmentation (MAS), while less accurate than DCNN in many applications, tends to generalize well to unseen datasets with different characteristics from the training dataset. Several groups have attempted to integrate the power of DCNN to learn complex data representations and the robustness of MAS to changes in image characteristics. However, these studies primarily focused on replacing individual components of MAS with DCNN models and reported marginal improvements in accuracy. In this study we describe and evaluate a 3D end-to-end hybrid MAS and DCNN segmentation pipeline, called Deep Label Fusion (DLF). The DLF pipeline consists of two main components with learnable weights, including a weighted voting subnet that mimics the MAS algorithm and a fine-tuning subnet that corrects residual segmentation errors to improve final segmentation accuracy. We evaluate DLF on five datasets that represent a diversity of anatomical structures (medial temporal lobe subregions and lumbar vertebrae) and imaging modalities (multi-modality, multi-field-strength MRI and Computational Tomography). These experiments show that DLF achieves comparable segmentation accuracy to nnU-Net (Isensee et al., 2020), the state-of-the-art DCNN pipeline, when evaluated on a dataset with similar characteristics to the training datasets, while outperforming nnU-Net on tasks that involve generalization to datasets with different characteristics (different MRI field strength or different patient population). DLF is also shown to consistently improve upon conventional MAS methods. In addition, a modality augmentation strategy tailored for multimodal imaging is proposed and demonstrated to be beneficial in improving the segmentation accuracy of learning-based methods, including DLF and DCNN, in missing data scenarios in test time as well as increasing the interpretability of the contribution of each individual modality.


Assuntos
Diagnóstico por Imagem , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Humanos
9.
Neuroimage Clin ; 33: 102913, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34952351

RESUMO

Frontotemporal lobar degeneration (FTLD) is a heterogeneous spectrum of age-associated neurodegenerative diseases that include two main pathologic categories of tau (FTLD-Tau) and TDP-43 (FTLD-TDP) proteinopathies. These distinct proteinopathies are often clinically indistinguishable during life, posing a major obstacle for diagnosis and emerging therapeutic trials tailored to disease-specific mechanisms. Moreover, MRI-derived measures have had limited success to date discriminating between FTLD-Tau or FTLD-TDP. T2*-weighted (T2*w) ex vivo MRI has previously been shown to be sensitive to non-heme iron in healthy intracortical lamination and myelin, and to pathological iron deposits in amyloid-beta plaques and activated microglia in Alzheimer's disease neuropathologic change (ADNC). However, an integrated, ex vivo MRI and histopathology approach is understudied in FTLD. We apply joint, whole-hemisphere ex vivo MRI at 7 T and histopathology to the study autopsy-confirmed FTLD-Tau (n = 4) and FTLD-TDP (n = 3), relative to ADNC disease-control brains with antemortem clinical symptoms of frontotemporal dementia (n = 2), and an age-matched healthy control. We detect distinct laminar patterns of novel iron-laden glial pathology in both FTLD-Tau and FTLD-TDP brains. We find iron-positive ameboid and hypertrophic microglia and astrocytes largely in deeper GM and adjacent WM in FTLD-Tau. In contrast, FTLD-TDP presents prominent superficial cortical layer iron reactivity in astrocytic processes enveloping small blood vessels with limited involvement of adjacent WM, as well as more diffuse distribution of punctate iron-rich dystrophic microglial processes across all GM lamina. This integrated MRI/histopathology approach reveals ex vivo MRI features that are consistent with these pathological observations distinguishing FTLD-Tau and FTLD-TDP subtypes, including prominent irregular hypointense signal in deeper cortex in FTLD-Tau whereas FTLD-TDP showed upper cortical layer hypointense bands and diffuse cortical speckling. Moreover, differences in adjacent WM degeneration and iron-rich gliosis on histology between FTLD-Tau and FTLD-TDP were also readily apparent on MRI as hyperintense signal and irregular areas of hypointensity, respectively that were more prominent in FTLD-Tau compared to FTLD-TDP. These unique histopathological and radiographic features were distinct from healthy control and ADNC brains, suggesting that iron-sensitive T2*w MRI, adapted to in vivo application at sufficient resolution, may eventually offer an opportunity to improve antemortem diagnosis of FTLD proteinopathies using tissue-validated methods.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Proteínas de Ligação a DNA , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/patologia , Degeneração Lobar Frontotemporal/diagnóstico por imagem , Degeneração Lobar Frontotemporal/patologia , Humanos , Inflamação/diagnóstico por imagem , Ferro , Imageamento por Ressonância Magnética , Proteínas tau
10.
Free Radic Biol Med ; 167: 287-298, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33757863

RESUMO

Preterm birth is a risk factor for growth failure and development of respiratory disease in children and young adults. Their early exposure to oxygen may contribute to lung disease because adult mice exposed to hyperoxia as neonates display reduced lung function, changes in the host response to respiratory viral infections, and develop pulmonary hypertension and heart failure that shortens their lifespan. Here, we provide new evidence that neonatal hyperoxia also impairs growth by inhibiting fat accumulation. Failure to accumulate fat may reflect a systemic defect in adipogenic potential of stem cells because bone marrow-derived mesenchymal cells (BMSCs) isolated from the mice grew slower and were more oxidized compared to controls. They also displayed reduced capacity to accumulate lipid and differentiate into adipocytes. BMSCs from adult mice exposed to neonatal hyperoxia express lower levels of peroxisome proliferator-activated receptor gamma (PPARγ), a transcription factor that drives adipocyte differentiation. The defect in adipogenesis was rescued by expressing PPARγ in these cells. These findings reveal early life exposure to high levels of oxygen may suppresses fat accumulation and impair adipogenic differentiation upstream of PPARγ signaling, thus potentially contributing to growth failure seen in people born preterm.


Assuntos
Hiperóxia , Células-Tronco Mesenquimais , Nascimento Prematuro , Adipogenia , Animais , Medula Óssea , Diferenciação Celular , Células Cultivadas , Feminino , Camundongos , PPAR gama/genética , Gravidez
11.
Neurobiol Aging ; 98: 231-241, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33341654

RESUMO

T1-magnetic resonance imaging (MRI) studies report early atrophy in the left anterior temporal lobe, especially the perirhinal cortex, in semantic variant primary progressive aphasia (svPPA). Improved segmentation protocols using high-resolution T2-MRI have enabled fine-grained medial temporal lobe (MTL) subregional measurements, which may provide novel information on the atrophy pattern and disease progression in svPPA. We aimed to investigate the MTL subregional atrophy pattern cross-sectionally and longitudinally in patients with svPPA as compared with controls and patients with Alzheimer's disease (AD). MTL subregional volumes were obtained using the Automated Segmentation for Hippocampal Subfields software from high-resolution T2-MRIs in 15 svPPA, 37 AD, and 23 healthy controls. All MTL volumes were corrected for intracranial volume and parahippocampal cortices for slice number. Longitudinal atrophy rates of all subregions were obtained using an unbiased deformation-based morphometry pipeline in 6 svPPA patients, 9 controls, and 12 AD patients. Cross-sectionally, significant volume loss was observed in svPPA compared with controls in the left MTL, right cornu ammonis 1 (CA1), Brodmann area (BA)35, and BA36 (subdivisions of the perirhinal cortex). Compared with AD patients, svPPA patients had significantly smaller left CA1, BA35, and left and right BA36 volumes. Longitudinally, svPPA patients had significantly greater atrophy rates of left and right BA36 than controls but not relative to AD patients. Fine-grained analysis of MTL atrophy patterns provides information about the evolution of atrophy in svPPA. These results indicate that MTL subregional measures might be useful markers to track disease progression or for clinical trials in svPPA.


Assuntos
Afasia Primária Progressiva/patologia , Lobo Temporal/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Afasia Primária Progressiva/diagnóstico por imagem , Atrofia , Biomarcadores , Imagem de Tensor de Difusão , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Córtex Perirrinal/diagnóstico por imagem , Córtex Perirrinal/patologia , Lobo Temporal/diagnóstico por imagem
12.
Acta Neuropathol Commun ; 9(1): 173, 2021 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-34689831

RESUMO

Tau neurofibrillary tangle (NFT) pathology in the medial temporal lobe (MTL) is closely linked to neurodegeneration, and is the early pathological change associated with Alzheimer's disease (AD). To elucidate patterns of structural change in the MTL specifically associated with tau pathology, we compared high-resolution ex vivo MRI scans of human postmortem MTL specimens with histology-based pathological assessments of the MTL. MTL specimens were obtained from twenty-nine brain donors, including patients with AD, other dementias, and individuals with no known history of neurological disease. Ex vivo MRI scans were combined using a customized groupwise diffeomorphic registration approach to construct a 3D probabilistic atlas that captures the anatomical variability of the MTL. Using serial histology imaging in eleven specimens, we labelled the MTL subregions in the atlas based on cytoarchitecture. Leveraging the atlas and neuropathological ratings of tau and TAR DNA-binding protein 43 (TDP-43) pathology severity, morphometric analysis was performed to correlate regional MTL thickness with the severity of tau pathology, after correcting for age and TDP-43 pathology. We found significant correlations between tau pathology and thickness in the entorhinal cortex (ERC) and stratum radiatum lacunosum moleculare (SRLM). When focusing on cases with low levels of TDP-43 pathology, we found strong associations between tau pathology and thickness in the ERC, SRLM and the subiculum/cornu ammonis 1 (CA1) subfields of the hippocampus, consistent with early Braak stages.


Assuntos
Imageamento Tridimensional/métodos , Emaranhados Neurofibrilares/patologia , Neuroimagem/métodos , Lobo Temporal/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Atlas como Assunto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Lobo Temporal/patologia , Proteínas tau
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA